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Abstract

The Bradley-Terry model for obtaining individual skill from paired comparisons has been
popular in many areas. In machine learning, this model is related to multi-class probability
estimates by coupling all pairwise classification results. Error correcting output codes
(ECOC) are a general framework to decompose a multi-class problem to several binary
problems. To obtain probability estimates under this framework, this paper introduces a
generalized Bradley-Terry model in which paired individual comparisons are extended to
paired team comparisons. We propose a simple algorithm with convergence proofs to solve
the model and obtain individual skill. Experiments on synthetic and real data demonstrate
that the algorithm is useful for obtaining multi-class probability estimates. Moreover, we
discuss four extensions of the proposed model: 1) weighted individual skill, 2) home-field
advantage, 3) ties, and 4) comparisons with more than two teams.

Keywords: Bradley-Terry model, Probability estimates, Error correcting output codes,
Support Vector Machines

1. Introduction

The Bradley-Terry model (Bradley and Terry, 1952) for paired comparisons has been broadly
applied in many areas such as statistics, sports, and machine learning. It considers a set of
k individuals for which

P (individual i beats individual j) =
pi

pi + pj
, (1)

and pi > 0 is the overall skill of individual i. Suppose that the outcomes of all comparisons
are independent and denote rij as the number of times that i beats j. Then the negative
log-likelihood takes the form

l(p) = −
∑

i<j

(

rij log
pi

pi + pj
+ rji log

pj

pi + pj

)

. (2)
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Since l(p) = l(αp) for any α > 0, l(p) is scale invariant. Therefore, it is convenient to
assume that

∑k
i=1 pi = 1 for the sake of identifiability. One can then estimate pi by

min
p

l(p)

subject to 0 ≤ pj, j = 1, . . . , k,

k
∑

j=1

pj = 1.
(3)

This approach dates back to (Zermelo, 1929) and has been extended to more general settings.
For instance, in sports scenario, extensions to account for the home-field advantage and ties
have been proposed. Some reviews are, for example, (David, 1988; Davidson and Farquhar,
1976; Hunter, 2004; Simons and Yao, 1999). The solution of (3) can be solved by a simple
iterative procedure:

Algorithm 1

1. Start with any initial p0
j > 0, j = 1, . . . , k.

2. Repeat (t = 0, 1, . . .)

(a) Let s = (t mod k) + 1. Define

pt+1 ≡
[

pt
1, . . . , p

t
s−1,

∑

i:i6=s rsi
∑

i:i6=s
rsi+ris

pt
s+pt

i

, pt
s+1, . . . , p

t
k

]T

. (4)

(b) Normalize pt+1.

until ∂l(pt)/∂pj = 0, j = 1, . . . , k are satisfied.

This algorithm is so simple that there is no need to use sophisticated optimization
techniques. If rij ∀i, j satisfy some mild conditions, Algorithm 1 globally converges to
the unique minimum of (3). A systematic study on the convergence of Algorithm 1 is in
(Hunter, 2004).

An earlier work (Hastie and Tibshirani, 1998) in statistics and machine learning con-
sidered the problem of obtaining multi-class probability estimates by coupling results from
pairwise comparisons. Assume

r̄ij ≡ P (x in class i | x in class i or j)

is known. This work estimates pi = P (x in class i) by minimizing the (weighted) Kullback-
Leibler (KL) distance between r̄ij and µij ≡ pi/(pi + pj):

min
p

∑

i<j

nij

(

r̄ij log
r̄ij

µij
+ r̄ji log

r̄ji

µji

)

subject to 0 ≤ pj, j = 1, . . . , k,

k
∑

j=1

pj = 1,

(5)
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where nij is the number of training data in class i or j. By defining rij ≡ nij r̄ij and
removing constant terms, (5) reduces to the same form as (2), and hence Algorithm 1 can
be used to find p. Although one might interpret this as a Bradley-Terry model by treating
classes as individuals and rij as the number that the ith class beats the jth class, it is not
indeed. First, rij (now defined as nij r̄ij) may not be an integer any more. Secondly, rij

are dependent as they share the same training set. However, the closeness between the two
motivates us to propose more general models in this paper.

The above approach involving comparisons for each pair of classes is referred to as the
“one-against-one” setting in multi-class classification. It is a special case of the framework
error correcting output codes (ECOC) to decompose a multi-class problem into a number
of binary problems (Dietterich and Bakiri, 1995; Allwein et al., 2001). Some classification
techniques are two-class based, so this framework extends them to multi-class scenarios.
Zadrozny (2002) generalizes the results in (Hastie and Tibshirani, 1998) to obtain prob-
ability estimates under ECOC settings. The author proposed an algorithm analogous
to Algorithm 1 and demonstrated some experimental results. However, the convergence
issue was not discussed. Though the author intended to minimize the KL distance as
Hastie and Tibshirani (1998) did, in Section 4.2 we show that their algorithm may not
converge to a point with the smallest KL distance.

Motivated from multi-class classification with ECOC settings, this paper presents a
generalized Bradley-Terry model where each competition is between two teams (two disjoint
subsets of subjects) and team size/members can vary from competition to competition.
Then from the outcomes of all comparisons, we fit this general model to estimate the
individual skill. Here we propose a simple iterative method to solve the generalized model.
The convergence is proved under mild conditions.

The proposed model has some potential applications. For example, in tennis or bad-
minton, if a player participates in many singles and doubles, this general model can combine
all outcomes to yield the estimated skill of all individuals. More importantly, for multi-class
problems by combining binary classification results, we can also minimize the KL distance
and obtain the same optimization problem. Hence the proposed iterative method can be
directly applied to obtain the probability estimate under ECOC settings.

This paper is organized as follows. Section 2 introduces a generalized Bradley-Terry
model and a simple algorithm to maximize the log-likelihood. The convergence of the
proposed algorithm is in Section 3. Section 4 discusses multi-class probability estimates and
experiments are in Sections 5 and 6. In Section 7 we discuss four extensions of the proposed
model: 1) weighted individual skill, 2) home-field advantage, 3) ties, and 4) comparisons
with more than two teams. Discussion and conclusions are in Section 8. A short and
preliminary version of this paper appeared in an earlier conference NIPS 2004 (Huang et al.,
2005) 1.

2. Generalized Bradley-Terry Model

In this section we study a generalized Bradley-Terry model for approximating individual
skill. Consider a group of k individuals: {1, . . . , k}. Each time two disjoint subsets I+

i and
I−i form teams for a series of games and ri ≥ 0 (r′i ≥ 0) is the number of times that I+

i

1. Programs used are at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/libsvm-errorcode.
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beats I−i (I−i beats I+
i ). Thus, we have Ii ⊂ {1, . . . , k}, i = 1, . . . ,m so that

Ii = I+
i ∪ I−i , I+

i 6= ∅, I−i 6= ∅, and I+
i ∩ I−i = ∅.

If the game is designed so that each member is equally important, we can assume that a
team’s skill is the sum of all its members’. This leads to the following model:

P (I+
i beats I−i ) =

∑

j∈I+

i
pj

∑

j∈Ii
pj

.

If the outcomes of all comparisons are independent, then estimated individual skill can be
obtained by defining

qi ≡
∑

j∈Ii

pj , q+
i ≡

∑

j∈I+

i

pj, q−i ≡
∑

j∈I−
i

pj

and minimizing the negative log-likelihood

min
p

l(p) = −
m
∑

i=1

(

ri log(q+
i /qi) + r′i log(q−i /qi)

)

subject to

k
∑

j=1

pj = 1, 0 ≤ pj, j = 1, . . . , k.

(6)

Note that (6) reduces to (3) in the pairwise approach, where m = k(k − 1)/2 and Ii, i =
1, . . . ,m are as the following:

I+
i I−i ri r′i
{1} {2} r12 r21
...

...
...

...
{1} {k} r1k rk1

{2} {3} r23 r32
...

...
...

...
{k − 1} {k} rk−1,k rk,k−1

In the rest of this section we discuss how to solve the optimization problem (6).

2.1 A Simple Procedure to Maximize the Likelihood

The difficulty of solving (6) over (3) is that now l(p) is expressed in terms of q+
i , q−i , qi but

the real variable is p. We propose the following algorithm to solve (6).
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Algorithm 2

1. Start with initial p0
j > 0, j = 1, . . . , k and obtain corresponding q0,+

i , q0,−
i , q0

i , i =
1, . . . ,m.

2. Repeat (t = 0, 1, . . .)

(a) Let s = (t mod k) + 1. Define pt+1 by pt+1
j = pt

j, ∀j 6= s, and

pt+1
s =

∑

i:s∈I+

i

ri

q
t,+

i

+
∑

i:s∈I−
i

r′
i

q
t,−

i

∑

i:s∈Ii

ri+r′
i

qt
i

pt
s. (7)

(b) Normalize pt+1.

(c) Update qt,+
i , qt,−

i , qt
i to qt+1,+

i , qt+1,−
i , qt+1

i , i = 1, . . . ,m.

until ∂l(pt)/∂pj = 0, j = 1, . . . , k are satisfied.

The gradient of l(p), used in the stopping criterion, is:

∂l(p)

∂ps
= −

m
∑

i=1

(

ri
∂ log q+

i

∂ps
+ r′i

∂ log q−i
∂ps

− (ri + r′i)
∂ log qi

∂ps

)

= −
∑

i:s∈I+

i

ri

q+
i

−
∑

i:s∈I−
i

r′i
q−i

+
∑

i:s∈Ii

ri + r′i
qi

, s = 1, . . . , k. (8)

In Algorithm 2, for the multiplicative factor in (7) to be well defined (i.e., non-zero
denominator), we need Assumption 1, which will be discussed in Section 3. Eq. (7) is a
simple fixed-point type update; in each iteration, only one component (i.e., pt

s) is modified
while the others remain the same. If we apply the updating rule (7) to the pairwise model,

pt+1
s =

∑

i:s<i
rsi

pt
s

+
∑

i:i<s
rsi

pt
s

∑

i:s<i
rsi+ris

pt
s+pt

i

+
∑

i:i<s
ris+rsi

pt
s+pt

i

pt
s =

∑

i:i6=s rsi
∑

i:i6=s
rsi+ris

pt
s+pt

i

reduces to (4).
The updating rule (7) is motivated from using a descent direction to strictly decrease

l(p): If ∂l(pt)/∂ps 6= 0 and pt
s > 0, then under suitable assumptions on ri, r

′
i,

∂l(pt)

∂ps
(pt+1

s − pt
s) =

∂l(pt)

∂ps

(

∑

i:s∈I+

i

ri

q+

i

+
∑

i:s∈I−
i

r′
i

q−
i

−∑i:s∈Ii

ri+r′
i

qi

∑

i:s∈Ii

ri+r′
i

qt
i

)

pt
s

=

(

−
(

∂l(pt)

∂ps

)2

pt
s

)

/





∑

i:s∈Ii

ri + r′i
qt
i



 < 0. (9)

Thus, pt+1
s − pt

s is a descent direction in optimization terminology since a sufficiently small
step along this direction guarantees the strict decrease of the function value. As now we

89



Huang, Weng, and Lin

take the whole direction without searching for the step size, more efforts are needed to
prove the strict decrease in the following Theorem 1. However, (9) does hint that (7) is a
reasonable update.

Theorem 1 Let s be the index to be updated at pt. If

1. pt
s > 0,

2. ∂l(pt)/∂ps 6= 0, and

3.
∑

i:s∈Ii
(ri + r′i) > 0,

then

l(pt+1) < l(pt).

The proof is in Appendix A. Note that
∑

i:s∈Ii
(ri + r′i) > 0 is a reasonable assumption. It

means that individual s participates in at least one game.

2.2 Other Methods to Maximize the Likelihood

We briefly discuss other methods to solve (6). For the original Bradley-Terry model, Hunter
(2004) discussed how to transform (3) to a logistic regression form: Under certain assump-
tions2, the optimal pi > 0,∀i. Using this property and the constraints pj ≥ 0,

∑k
j=1 pj = 1

of (3), we can reparameterize the function (2) by

ps =
eβs

∑k
j=1 eβj

, (10)

and obtain

−
∑

i<j

(

rij log
1

1 + eβj−βi
+ rji log

eβj−βi

1 + eβj−βi

)

. (11)

This is the negative log-likelihood of a logistic regression model. Hence, methods such as
iterative weighted least squares (IWLS) (McCullagh and Nelder, 1990) can be used to fit
the model. In addition, β is now unrestricted, so (3) is transformed to an unconstrained
optimization problem. Then conventional optimization techniques such as Newton or Quasi
Newton can also be applied.

Now for the generalized model, (6) can still be re-parameterized as an unconstrained
problem with the variable β. However, the negative log-likelihood

−
m
∑

i=1

(

ri log

∑

j∈I+

i
eβj

∑

j∈Ii
eβj

+ r′i log

∑

j∈I−
i

eβj

∑

j∈Ii
eβj

)

(12)

is not in a form similar to (11), so methods for logistic regression may not be used. Of course
Newton or Quasi Newton is still applicable but their implementations are not simpler than
Algorithm 2.

2. They will be described in the next section.
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3. Convergence of Algorithm 2

Though Theorem 1 has shown the strict decrease of l(p), we must further prove that
Algorithm 2 converges to a stationary point of (6). Thus if l(p) is convex, a global optimum
is obtained. A vector p is a stationary (Karash-Kuhn-Tucker) point of (6) if and only if
there is a scalar δ and two nonnegative vectors λ and ξ such that

∇f(p)j = δ + λj − ξj,

λjpj = 0, ξj(1 − pj) = 0, j = 1, . . . , k.

In the following we will prove that under certain conditions Algorithm 2 converges to a
point satisfying

0 < pj < 1,∇f(p)j = 0, j = 1, . . . , k. (13)

That is, δ = λj = ξj = 0,∀j. Problem (6) is quite special as through the convergence proof
of Algorithm 2 we show that its optimality condition reduces to (13), the condition without
considering constraints. Furthermore, an interesting side-result is that from

∑k
j=1 pj = 1

and (13), we obtain a point in Rk satisfying (k + 1) equations.

If Algorithm 2 stops in a finite number of iterations, then ∂l(p)/∂pj = 0, j = 1, . . . , k,
which means a stationary point of (6) is already obtained. Thus, we only need to handle
the case where {pt} is an infinite sequence. As {pt}∞t=0 is in a compact set

{p | 0 ≤ ps ≤ 1,
k
∑

j=1

pj = 1},

there is at least one convergent subsequence. Assume that {pt}, t ∈ K is any such sequence
and it converges to p∗. In the following we will show that ∂l(p∗)/∂pj = 0, j = 1, . . . , k.

To prove the convergence of a fixed-point type algorithm (i.e., Lyapunov’s theorem), we
require p∗s > 0,∀s. Then if ∂l(p∗)/∂ps 6= 0 (i.e., p∗ is not optimal), we can use (7) to find
p∗+1 6= p∗, and, as a result of Theorem 1, l(p∗+1) < l(p∗). This property further leads to
a contradiction. To have p∗s > 0,∀s, for the original Bradley-Terry model, Ford (1957) and
Hunter (2004) assume that for any pair of individuals s and j, there is a “path” from s to
j; that is, rs,s1

> 0, rs1,s2
> 0, . . . , rst,j > 0. The idea behind this assumption is simple:

Since
∑k

r=1 p∗r = 1, there is at least one p∗j > 0. If in certain games s beats s1, s1 beats
s2, . . ., and st beats j, then p∗s, the skill of individual s, should not be as bad as zero. For
the generalized model, we make a similar assumption:

Assumption 1 For any two different individuals s and j, there are Is0
, Is1

, . . . , Ist
, such

that either

1. rs0
> 0, rs1

> 0, . . . , rst
> 0,

2. I+
s0

= {s}; I+
sr

⊂ Isr−1
, r = 1, . . . , t; j ∈ I−st

,

or

1. r′s0
> 0, r′s1

> 0, . . . , r′st
> 0,
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2. I−s0
= {s}; I−sr

⊂ Isr−1
, r = 1, . . . , t; j ∈ I+

st
.

The idea is that if p∗j > 0, and s beats I−s0
, a subset of Is0

beats I−s1
, a subset of Is1

beats
I−s2

, . . . , and a subset of Ist−1
beats I−st

, which includes j, then p∗s should not be zero. How
this assumption is exactly used is in Appendix B for proving Lemma 2.

Assumption 1 is weaker than that made earlier in (Huang et al., 2005). However, even
with the above explanation, this assumption seems to be very strong. Whether the gener-
alized model satisfies Assumption 1 or not, an easy way to fulfill it is to add an additional
term

− µ
k
∑

s=1

log

(

ps
∑k

j=1 pj

)

(14)

to l(p), where µ is a small positive number. That is, for each s, we make an Ii = {1, . . . , k}
with I+

i = {s}, ri = µ, and r′i = 0. As
∑k

j=1 pj = 1 is one of the constraints, (14) reduces

to −µ
∑k

s=1 log ps, which is usually used as a barrier term in optimization to ensure that ps

does not go to zero.
An issue left in Section 2 is whether the multiplicative factor in (7) is well defined. With

Assumption 1 and initial p0
j > 0, j = 1, . . . , k, one can show by induction that pt

j > 0,∀t
and hence the denominator of (7) is never zero: If pt

j > 0, Assumption 1 implies that there

is some i such that I+
i = {j} or I−i = {j}. Then either

∑

i:j∈I+

i
ri/q

t,+
i or

∑

i:j∈I−
i

r′i/q
t,−
i is

positive. Thus, both numerator and denominator in the multiplicative factor are positive,
and so is pt+1

j .
The result p∗s > 0 is proved in the following lemma.

Lemma 2 If Assumption 1 holds, p∗s > 0, s = 1, . . . , k.

The proof is in Appendix B.
As the convergence proof will use the strictly decreasing result, we note that Assump-

tion 1 implies the condition
∑

i:s∈Ii
(ri + r′i) > 0,∀s, required by Theorem 1. Finally, the

convergence is established:

Theorem 3 Under Assumption 1, any convergent point of Algorithm 2 is a stationary

point of (6).

The proof is in Appendix C. Though ri in the Bradley-Terry model is an integer
indicating the number of times that team I+

i beats I−i , in the convergence proof we do not
use such a property. Hence later for multi-class probability estimates, where ri is a real
number, the convergence result still holds.

Note that a stationary point may be only a saddle point. If (6) is a convex programming
problem, then a stationary point is a global minimum. Unfortunately, l(p) may not be
convex, so it is not clear whether Algorithm 2 converges to a global minimum or not. The
following theorem states that in some cases including the original Bradley-Terry model, any
convergent point is a global minimum, and hence a maximum likelihood estimator:

Theorem 4 Under Assumption 1, if

1. |I+
i | = |I−i | = 1, i = 1, . . . ,m or
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2. |Ii| = k, i = 1, . . . ,m,

then (6) has a unique global minimum and Algorithm 2 globally converges to it.

The proof is in Appendix D. The first case corresponds to the original Bradley-Terry model.
Later we will show that under Assumption 1, the second case is related to “one-against-the
rest” for multi-class probability estimates. Thus though the theorem seems to be rather
restricted, it corresponds to useful situations.

4. Multi-class Probability Estimates

A classification problem is to train a model from data with known class labels and then
predict labels of new data. Many classification methods are two-class based approaches and
there are different ways to extend them for multi-class cases. Most existing studies focus
on predicting class labels but not probability estimates. In this section, we discuss how the
generalized Bradley-Terry model can be applied to multi-class probability estimates.

As mentioned in Section 1, there are various ways to decompose a multi-class prob-
lem into a number of binary classification problems. Among them, the most commonly
used are “one-against-one” and “one-against-the rest.” Recently Allwein et al. (2001) pro-
posed a more general framework for the decomposition. Their idea, extended from that
of Dietterich and Bakiri (1995), is to associate each class with a row of a k × m “coding
matrix” with all entries from {−1, 0,+1}. Here m is the number of binary classification
problems to be constructed. Each column of the matrix represents a comparison between
classes with “−1” and “+1,” ignoring classes with “0.” Note that the classes with “−1”
and “+1” correspond to our I−i and I+

i , respectively. Then the binary learning method is
run for each column of the matrix to obtain m binary decision rules. For a given example,
one predicts the class label to be j if the results of the m binary decision rules are “clos-
est” to labels of row j in the coding matrix. Since this coding method can correct errors
made by some individual decision rules, it is referred to as error correcting output codes

(ECOC). Clearly the commonly used “one-against-one” and “one-against-the rest” settings
are special cases of this framework.

Given ni, the number of training data with classes in Ii = I+
i ∪ I−i , we assume here that

for any given data x,

r̄i = P (x in classes of I+
i | x in classes of Ii) (15)

is available, and the task is to estimate P (x in class s), s = 1, . . . , k. We minimize the
(weighted) KL distance between r̄i and q+

i /q−i similar to (Hastie and Tibshirani, 1998):

min
p

m
∑

i=1

ni

(

r̄i log
r̄i

(q+
i /qi)

+ (1 − r̄i) log
1 − r̄i

(q−i /qi)

)

. (16)

By defining

ri ≡ nir̄i and r′i ≡ ni(1 − r̄i), (17)

and removing constant terms, (16) reduces to (6), the negative log-likelihood of the gener-
alized Bradley-Terry model. It is explained in Section 1 that one cannot directly interpret
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this setting as a generalized Bradley-Terry model. Instead, we minimize the KL distance
and obtain the same optimization problem.

We show in Section 5 that many practical “error correcting codes” have the same |Ii|,
i.e., each binary problem involves the same number of classes. Thus, if data is balanced (all
classes have about the same number of instances), then n1 ≈ · · · ≈ nm and we can remove
ni in (16) without affecting the minimization of l(p). As a result, ri = r̄i and r′i = 1 − r̄i.

In the rest of this section we discuss the case of “one-against-the rest” in detail and the
earlier result in (Zadrozny, 2002).

4.1 Properties of the “One-against-the rest” Approach

For this approach, m = k and Ii, i = 1, . . . ,m are

I+
i I−i ri r′i
{1} {2, . . . , k} r1 1 − r1

{2} {1, 3, . . . , k} r2 1 − r2
...

...
...

...
{k} {1, . . . , k − 1} rk 1 − rk

Clearly, |Ii| = k ∀i, so every game involves all classes. Then, n1 = · · · = nm = the total
number of training data and the solution of (16) is not affected by ni. This and (17) suggest
that we can solve the problem by simply taking ni = 1 and ri + r′i = 1, ∀i. Thus, (8) can
be simplified as

∂l(p)

∂ps
= −rs

ps
−
∑

j:j 6=s

r′j
1 − pj

+ k.

Setting ∂l(p)/∂ps = 0 ∀s, we have

rs

ps
− 1 − rs

1 − ps
= k −

k
∑

j=1

r′j
1 − pj

. (18)

Since the right-hand side of (18) is the same for all s, we can denote it by δ. If δ = 0, then
pi = ri. This happens only if

∑k
i=1 ri = 1. If δ 6= 0, (18) implies

ps =
(1 + δ) −

√

(1 + δ)2 − 4rsδ

2δ
. (19)

In Appendix E we show that ps defined in (19) satisfies 0 ≤ ps ≤ 1. Note that ((1 + δ) +
√

(1 + δ)2 − 4rsδ)/2δ also satisfies (18), but when δ < 0, it is negative and when δ > 0, it
is greater than 1. Then the solution procedure is as the following:

If
∑k

i=1 ri = 1,
optimal p = [r1, . . . , rk]

T .
else

find the root of
∑k

s=1
(1+δ)−

√
(1+δ)2−4rsδ

2δ
− 1 = 0.

optimal ps = (19).
If
∑k

i=1 ri = 1, p = [r1, . . . , rk]
T satisfies ∂l(p)/∂ps = 0 ∀s, and thus is the unique optimal

solution in light of Theorem 4. For the else part, Appendix E proves that the above equation
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of δ has a unique root. Therefore, instead of using Algorithm 2, one can easily solve a one-
variable nonlinear equation and obtain the optimal p. This “one-against-the rest” setting
is special as we can directly prove the existence of a solution satisfying k + 1 equations:
∑k

s=1 ps = 1 and ∂l(p)/∂ps = 0, s = 1, . . . , k. Earlier for general models we rely on the
convergence proof of Algorithm 2 to show the existence (see the discussion in the beginning
of Section 3).

From (19), if δ > 0, larger ps implies smaller (1 + δ)2 − 4rsδ and hence larger rs. The
situation for δ < 0 is similar. Therefore, the order of p1, . . . , pk is the same as that of
r1, . . . , rk:

Theorem 5 If rs ≥ rt, then ps ≥ pt.

This theorem indicates that results from the generalized Bradley-Terry model are reasonable
estimates.

4.2 An Earlier Approach

Zadrozny (2002) was the first to address the probability estimates using error-correcting
codes. By considering the same optimization problem (16), she proposes a heuristic updat-
ing rule

pt+1
s ≡

∑

i:s∈I+

i
ri +

∑

i:s∈I−
i

r′i
∑

i:s∈I+

i

niq
t,+

i

qt
i

+
∑

i:s∈I−
i

niq
t,−

i

qt
i

pt
s, (20)

but does not provide a convergence proof. For the “one-against-one” setting, (20) reduces to
(4) in Algorithm 1. However, we will show that under other ECOC settings, the algorithm
using (20) may not converge to a point with the smallest KL distance. Taking the “one-
against-the rest” approach, if k = 3 and r1 = r2 = 3/4, r3 = 1/2, for our approach Theorem
5 implies p1 = p2. Then (18) and p1 + p2 + p3 = 1 give

3

4p1
− 1

4(1 − p1)
=

1

2p3
− 1

2(1 − p3)
=

1

2(1 − 2p1)
− 1

4p1
.

This leads to a solution

p = [15 −
√

33, 15 −
√

33, 2
√

33 − 6]T /24, (21)

which is also unique according to Theorem 4. If this is a convergent point by using (20),
then a further update from it should lead to the same point (after normalization). Thus, the
three multiplicative factors must be the same. Since we keep

∑k
i=1 pt

i = 1 in the algorithm,
with the property ri + r′i = 1, for this example the factor in the updating rule (20) is

rs +
∑

i:i6=s r′i
pt

s +
∑

i:i6=s(1 − pt
i)

=
k − 1 + 2rs −

∑k
i=1 ri

k − 2 + 2pt
s

=
2rs

1 + 2pt
s

. (22)

Clearly the p obtained earlier in (21) by our approach of minimizing the KL distance does
not result in the same value for (22). Thus, in this case Zadrozny (2002)’s approach fails to
converge to the unique solution of (16) and hence lacks a clear interpretation.
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5. Experiments: Simulated Examples

In the following two sections, we present experiments on multi-class probability estimates
using synthetic and real-world data. In implementing Algorithm 2, we use the following
stopping condition:

max
s:s∈{1,...,k}

∣

∣

∣

∣

∑

i:s∈I+

i

ri

q
t,+
i

+
∑

i:s∈I−
i

r′i
q

t,−
i

∑

i:s∈Ii

ri+r′
i

qt
i

− 1

∣

∣

∣

∣

< 0.001,

which implies that ∂l(pt)/∂ps, s = 1, . . . , k are all close to zero.

5.1 Data Generation

We consider the same setting in (Hastie and Tibshirani, 1998; Wu et al., 2004) by defining
three possible class probabilities:

(a) p1 = 1.5/k, pj = (1 − p1)/(k − 1), j = 2, . . . , k.

(b) k1 = k/2 if k is even, and (k + 1)/2 if k is odd; then p1 = 0.95 × 1.5/k1, pi =
(0.95 − p1)/(k1 − 1) for i = 2, . . . , k1, and pi = 0.05/(k − k1) for i = k1 + 1, . . . , k.

(c) p1 = 0.95 × 1.5/2, p2 = 0.95 − p1, and pi = 0.05/(k − 2), i = 3, . . . , k.

All classes are competitive in case (a), but only two dominate in (c). For given Ii, i =
1, . . . ,m, we generate ri by adding some noise to q+

i /qi and then check if the proposed
method obtains good probability estimates. Since q+

i /qi of these three cases are different,
it is difficult to have a fair way of adding noise. Furthermore, various ECOC settings
(described later) will also result in different q+

i /qi. Though far from perfect, here we try
two ways:

1. An “absolute” amount of noise:

ri = min(max(ǫ,
q+
i

qi
+ 0.1N(0, 1)), 1 − ǫ). (23)

Then r′i = 1 − ri. Here ǫ = 10−7 is used so that all ri, r
′
i are positive.

This is the setting considered in (Hastie and Tibshirani, 1998).

2. A “relative” amount of noise:

ri = min(max(ǫ,
q+
i

qi
(1 + 0.1N(0, 1))), 1 − ǫ). (24)

r′i and ǫ are set in the same way.
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5.2 Results of Various ECOC Settings

We consider the four encodings used in (Allwein et al., 2001) to generate Ii:

1. “1vs1”: the pairwise approach (Eq. (5)).

2. “1vsrest”: the “One-against-the rest” approach in Section 4.1.

3. “dense”: Ii = {1, . . . , k} for all i. Ii is randomly split to two equally-sized sets I+
i and

I−i . [10 log2 k] 3 such splits are generated. That is, m = [10 log2 k].

Intuitively, more combinations of subjects as teams give more information and may lead
to a better approximation of individual skill. Thus, we would like to select a diversified
I+
i , I−i , i = 1, . . . ,m. Following Allwein et al. (2001), we repeat the selection 100 times.

For each collection of I+
i , I−i , i = 1, . . . ,m, we calculate the smallest distance between

any pair of (I+
i , I−i ) and (I+

j , I−j ). A larger value indicates better quality of the coding,

so we pick the one with the largest value. For the distance between any pair of (I+
i , I−i )

and (I+
j , I−j ), Allwein et al. (2001) consider a generalized Hamming distance defined as

follows:

k
∑

s=1











0 if s ∈ I+
i ∩ I+

j or s ∈ I−i ∩ I−j ,

1 if s ∈ I+
i ∩ I−j or s ∈ I−i ∩ I+

j ,

1/2 if s /∈ Ii or s /∈ Ij.

4. “sparse”: I+
i , I−i are randomly drawn from {1, . . . , k} with E(|I+

i |) = E(|I−i |) = k/4.
Then [15 log2 k] such splits are generated. Similar to “dense,” we repeat the procedure
100 times to find a good coding.

The way of adding noise may favor some ECOC settings. Since in general

q+
i

qi
for “1vs1” ≫ q+

i

qi
for “1vsrest,”

adding 0.1N(0, 1) to q+
i /qi result in very inaccurate ri for “1vsrest.” On the other hand,

if using a relative way, noise added to ri and r′i for “1vsrest” is smaller than that for
“1vs1.” This analysis indicates that using the two different noise makes the experiment
more complete.

Figures 1 and 2 show results of adding an “absolute” amount of noise. Two criteria are
used to evaluate the obtained probability estimates: Figures 1 presents averaged accuracy
rates over 500 replicates for each of the four encodings when k = 22, 23, . . . , 26. Figure 2
gives the (relative) mean squared error (MSE):

MSE =
1

500

500
∑

j=1

(

k
∑

i=1

(p̂j
i − pi)

2/

k
∑

i=1

p2
i

)

, (25)

where p̂j is the probability estimate obtained in the jth of the 500 replicates. Using the
same two criteria, Figures 3 and 4 present results of adding a “relative” amount of noise.

3. We use [x] to denote the nearest integer value of x.
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Figure 1: Accuracy of predicting the true class by four encodings and (23) for generating
noise: “1vs1” (dashed line, square marked), “1vsrest” (solid line, cross marked),
“dense” (dotted line, circle marked), “sparse” (dashdot line, diamond marked).
Sub-figures 1(a), 1(b) and 1(c) correspond to the three settings of class probabil-
ities in Section 5.1.
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Figure 2: MSE by four encodings and (23) for generating noise. The legend is the same as
that of Figure 1.
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Figure 3: Accuracy of predicting the true class by four encodings and (24) for generating
noise. The legend is the same as that of Figure 1.
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Figure 4: MSE by four encodings and (24) for generating noise. The legend is the same as
that of Figure 1.

Clearly, following our earlier analysis on adding noise, results of “1vsrest” in Figures 3 and
4 are much better than those in Figures 1 and 2. In all figures, “dense and “sparse” are less
competitive in cases (a) and (b) when k is large. Due to the large |I+

i | and |I−i |, the model
is unable to single out a clear winner when probabilities are more balanced. For “1vs1,” it is
good for (a) and (b), but suffers some losses in (c), where the class probabilities are highly
unbalanced. Wu et al. (2004) have observed this shortcoming and proposed a quadratic
model for the “1vs1” setting.
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(b) via exponential-loss decoding

Figure 5: Testing error on smaller (300 training, 500 testing) data sets by four encodings:
“1vs1” (dashed line, square marked), “1vsrest” (solid line, cross marked), “dense”
(dotted line, circle marked), “sparse” (dashdot line, asterisk marked).
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(b) via exponential-loss decoding

Figure 6: Testing error on larger (800 training, 1000 testing) data sets by four encodings.
The legend is the same as that of Figure 5.

Results here indicate that the four encodings perform very differently under various
conditions. Later in experiments for real data, we will see that in general the situation is
closer to case (c), and all four encodings are practically viable4.

4. Experiments here are done using MATLAB (http://www.mathworks.com), and the programs are avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/libsvm-errorcode/generalBT.zip .

100

http://www.mathworks.com
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/libsvm-errorcode/generalBT.zip


Generalized Bradley-Terry Models and Multiclass Probability Estimates

6. Experiments: Real Data

In this section we present experimental results on some real-world multi-class problems.
There are two goals of experiments here:

1. Check the viability of the proposed multi-class probability estimates. We hope that
under reasonable ECOC settings, equally good probabilities are obtained.

2. Compare with the standard ECOC approach without extracting probabilities. This
is less important than the first goal as the paper focuses on probability estimates.
However, as the classification accuracy is one of the evaluation criteria used here, we
can easily conduct a comparison.

6.1 Data and Experimental Settings

We consider data sets used in (Wu et al., 2004): dna, satimage, segment, and letter from the
Statlog collection (Michie et al., 1994), waveform from UCI Machine Learning Repository
(Blake and Merz, 1998), USPS (Hull, 1994), and MNIST (LeCun et al., 1998). Except dna,
which takes two possible values 0 and 1, each attribute of all other data is linearly scaled
to [−1, 1]. The data set statistics are in Table 1.

Table 1: Data Set Statistics

dataset dna waveform satimage segment USPS MNIST letter

#classes 3 3 6 7 10 10 26
#attributes 180 21 36 19 256 784 16

After data scaling, we randomly select smaller (300/500) and larger (800/1,000) train-
ing/testing sets from thousands of points for experiments. 20 such selections are generated
and results are averaged5.

We use the same four ways in Section 5 to generate Ii. All of them have |I1| ≈ · · · ≈ |Im|.
With the property that these multi-class problems are reasonably balanced, we set ni = 1
in (16).

We consider support vector machines (SVM) (Boser et al., 1992; Cortes and Vapnik,
1995) with the RBF (Radial Basis Function) kernel e−γ‖xi−xj‖

2

as the binary classifier. An
improved version (Lin et al., 2003) of (Platt, 2000) obtains ri using SVM decision values.
It is known that SVM may not give good probability estimates (e.g., Zhang (2004)), but
Platt (2000) and Wu et al. (2004) empirically show that using decision values from cross
validation yields acceptable results in practice. In addition, SVM is sometimes sensitive to
parameters, so we conduct a selection procedure before testing. Details can be found in
Figure 4 of (Wu et al., 2004). The code is modified from LIBSVM (Chang and Lin, 2001),
a library for support vector machines.

5. All training/testing sets used are at http://www.csie.ntu.edu.tw/∼cjlin/papers/svmprob/data.
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6.2 Evaluation Criteria and Results

For these real data sets, there are no true probability values available. We consider the
same three evaluation criteria used in (Wu et al., 2004):

1. Test errors. Averages of 20 errors for smaller and larger sets are in Figures 5(a) and
6(a), respectively.

2. MSE (Brier Score).

1

l

l
∑

j=1

(

k
∑

i=1

(Iyj=i − p̂j
i )

2

)

,

where l is the number of test data, p̂j is the probability estimate of the jth data,
yj is the true class label, and Iyj=i is an indicator function (1 if yj = i and 0 other-
wise). This measurement (Brier, 1950), popular in meteorology, satisfies the following
property:

arg min
p̂

EY [
k
∑

i=1

(IY =i − p̂i)
2] ≡ arg min

p̂

k
∑

i=1

(p̂i − pi)
2,

where Y , a random variable for the class label, has the probability distribution p.
Brier score is thus useful when the true probabilities are unknown. We present the
average of 20 Brier scores in Figure 7.

3. Log loss:

−1

l

l
∑

j=1

log p̂j
yj

,

where p̂j is the probability estimate of the jth data and yj is its actual class label. It
is another useful criterion when true probabilities are unknown:

min
p̂

EY [−
k
∑

i=1

log p̂i · IY =i] ≡ min
p̂

−
k
∑

i=1

pi log p̂i

has the minimum at p̂i = pi, i = 1, . . . , k. Average of 20 splits are presented in Figure
8.

Results of using the three criteria all indicate that the four encodings are quite com-
petitive. Such an observation suggests that in practical problems class probabilities may
resemble those specified in case (c) in Section 5; that is, only few classes dominate. Wu et al.
(2004) is the first one pointing out this resemblance. In addition, all figures show that “1vs1”
is slightly worse than others in the case of larger k (e.g., letter). Earlier Wu et al. (2004) pro-
posed a quadratic model, which gives better probability estimates than the Bradley-Terry
model for “1vs1.”

In terms of the computational time, because the number of binary problems for “dense”
and “sparse” ([10 log2 k] and [15 log2 k], respectively) are larger than k, and each binary
problem involves many classes of data (all and one half), their training time is longer than
that of “1vs1” and “1vsrest.” “Dense” is particularly time consuming. Note that though
“1vs1” solves k(k − 1)/2 SVMs, each is small via using only two classes of data.
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Figure 7: MSE by four encodings. The legend is the same as that of Figure 5.
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Figure 8: Log loss by four encodings. The legend is the same as that of Figure 5.

To check the effectiveness of the proposed model in multi-class classification, we compare
it with a standard ECOC-based strategy which does not produce probabilities: exponential
loss-based decoding by Allwein et al. (2001). Let f̂i be the decision function of the ith
binary classifier, and f̂i(x) > 0 (< 0) specifies that data x to be in classes in I+

i (I−i ). This
approach determines the predicted label by the following rule:

predicted label = arg min
s

(

∑

i:s∈I+

i

e−f̂i +
∑

i:s∈I−
i

ef̂i

)

.

Testing errors for smaller and larger sets are in Figures 5(b) and 6(b), respectively. Com-
paring them with results by the proposed model in Figures 5(a) and 6(a), we observe that
both approaches have very similar errors. Therefore, in terms of predicting class labels only,
our new method is competitive.
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7. Extensions of the Generalized Bradley-Terry Model

In addition to multiclass probability estimates, the proposed generalized Bradley-Terry
model, as mentioned in Section 1, has some potential applications in sports. We consider
in this section several extensions based on common sport scenarios and show that, with a
slight modification of Algorithm 2, they can be easily solved as well.

7.1 Weighted Individual Skill

In some sports, team performance is highly affected by certain positions. For example, many
people think guards are relatively more important than centers and forwards in basketball
games. We can extend the generalized Bradley-Terry model to this case: Define

q̄i ≡
∑

j:j∈Ii

wijpj , q̄+
i ≡

∑

j:j∈I+

i

wijpj, q̄−i ≡
∑

j:j∈I−
i

wijpj ,

where wij > 0 is a given weight parameter reflecting individual j’s position in the game
between I+

i and I−i . By minimizing the same negative log-likelihood function (6), estimated
individual skill can be obtained. Here Algorithm 2 can still be applied but with the updating
rule replaced by

pt+1
s =

∑

i:s∈I+

i

riwis

q̄
t,+

i

+
∑

i:s∈I−
i

r′iwis

q̄
t,−

i

∑

i:s∈Ii

(ri+r′
i
)wis

q̄t
i

pt
s, (26)

which is derived similarly to (7) so that the multiplicative factor is equal to one when
∂l(p)/∂ps = 0. The convergence can be proved similarly. However, it may be harder to
obtain the global optimality: Case 1 in Theorem 4 still holds, but Case 2 may not since
q̄i needs not be equal to one (the proof of Case 2 requires qi = 1, which is guaranteed by
|Ii| = k).

7.2 Home-field Advantage

The original home-field advantage model (Agresti, 1990) is based on paired individual com-
parisons. We can incorporate its idea into our proposed model by taking

P (I+
i beats I−i ) =







θq+

i

θq+

i
+q−

i

if I+
i is home,

q+

i

q+

i
+θq−

i

if I−i is home,

where θ > 0 measures the strength of the home-field advantage or disadvantage. Note that
θ is an unknown parameter to be estimated, while the weights wij in Section 7.1 are given.

Let r̄i ≥ 0 and r̄′i ≥ 0 be the number of times that I+
i wins and loses at home, respec-

tively. For I+
i ’s away games, we let r̃i ≥ 0 and r̃′i ≥ 0 be the number of times that I+

i wins
and loses. The minimization of the negative log-likelihood function thus becomes:

min
p,θ

l(p, θ) =

−
m
∑

i=1

(

r̄i log
θq+

i

θq+
i + q−i

+ r̃i log
q+
i

q+
i + θq−i

+ r̄′i log
q−i

θq+
i + q−i

+ r̃′i log
θq−i

q+
i + θq−i

)
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under the constraints in (6) and the condition θ ≥ 0.
To apply Algorithm 2 on the new optimization problem, we must modify the updating

rule. For each s, ∂l(p, θ)/∂ps = 0 leads to the following rule6:

pt+1
s =

∑

i:s∈I+

i

r̄i+r̃i

q+

i

+
∑

i:s∈I−
i

r̄′i+r̃′i
q−
i

∑

i:s∈I+

i

(

θ(r̄i+r̄′
i
)

θq+

i
+q−

i

+
r̃i+r̃′

i

q+

i
+θq−

i

)

+
∑

i:s∈I−
i

(

r̄i+r̄′
i

θq+

i
+q−

i

+
θ(r̃i+r̃′

i
)

q+

i
+θq−

i

)pt
s. (27)

For θ, from ∂l(p, θ)/∂θ = 0, we have

θt+1 =

∑m
i=1(r̄i + r̃′i)

∑m
i=1

(

q+

i
(r̄i+r̄′

i
)

θtq+

i
+q−

i

+
q−
i

(r̃i+r̃′
i
)

q+

i
+θtq−

i

) . (28)

Unlike the case of updating pt
s, there is no need to normalize θt+1. The algorithm then

cyclically updates p1, . . . , pk, and θ. If ps is updated, we can slightly modify the proof of
Theorem 1 and obtain the strict decrease of l(p, θ). Moreover, Appendix F gives a simple
derivation of l(pt, θt+1) < l(pt, θt). Thus, if we can ensure that θt is bounded above, then
under a modified version of Assumption 1 where max(r̄si

, r̃si
) > 0 replaces rsi

> 0, the
convergence of Algorithm 2 (i.e., Theorem 3) still holds by a similar proof.

7.3 Ties

Suppose ties are possible between teams. Extending the model proposed in (Rao and Kupper,
1967), we consider:

P (I+
i beats I−i ) =

q+
i

q+
i + θq−i

,

P (I−i beats I+
i ) =

q−i
θq+

i + q−i
, and

P (I+
i ties I−i ) =

(θ2 − 1)q+
i q−i

(q+
i + θq−i )(θq+

i + q−i )
,

where θ > 1 is a threshold parameter to be estimated.
Let ti be the number of times that I+

i ties I−i and ri, r′i defined as before. We then
minimize the following negative log-likelihood function:

min
p,θ

l(p, θ)

= −
m
∑

i=1

(

ri log
q+
i

q+
i + θq−i

+ r′i log
q−i

θq+
i + q−i

+ ti log
(θ2 − 1)q+

i q−i
(q+

i + θq−i )(θq+
i + q−i )

)

= −
m
∑

i=1

(

ri log
q+
i

q+
i + θq−i

+ r′i log
q−i

θq+
i + q−i

+ ti log
θq+

i

θq+
i + q−i

+ ti log
θq−i

q+
i + θq−i

)

(29)

−
m
∑

i=1

ti log
θ2 − 1

θ2
(30)

6. For convenience, q
t,+

i (qt,−

i ) is abbreviated as q
+

i (q−i ). The same abbreviation is used in the updating
rule in Sections 7.3 and 7.4.
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under the constraints in (6) and the condition θ > 1.

For updating pt
s, θ is considered as a constant and (29) is in a form of the Home-field

model, so the rule is similar to (27). The strict decrease of l(p, θ) can be established as
well. For updating θ, we have

θt+1 =
1

2Ct
+

√

1 +
1

4C2
t

, (31)

where

Ct =
1

2
∑m

i=1 ti

(

m
∑

i=1

(ri + ti)q
−
i

q+
i + θtq−i

+
m
∑

i=1

(r′i + ti)q
+
i

θtq+
i + q−i

)

.

The derivation and the strict decrease of l(p, θ) are in Appendix F. If we can ensure that
1 < θt < ∞ and modify Assumption 1 as in Section 7.2, the convergence of Algorithm 2
also holds.

7.4 Multiple Team Comparisons

In this type of comparison, a game may include more than two participants, and the result
is a ranking of the participants. For a game of three participants. Pendergrass and Bradley
(1960) proposed using

P (i best, j in the middle, and k worst)

= P (i beats j and k) · P (j beats k)

=
pi

pi + (pj + pk)
· pj

pj + pk
.

A general model introduced in (Placket, 1975) is:

P (a(1) → a(2) → · · · → a(k)) =

k
∏

i=1

pa(i)

pa(i) + pa(i+1) + · · · + pa(k)
, (32)

where a(i), 1 ≤ i ≤ k is the ith ranked individual and → denotes the relation “is ranked
higher than.” A detailed discussion of this model is in (Hunter, 2004, Section 5).

With similar ideas, we consider a more general setting: Each game may include more
than two participating teams. Assume that there are k individuals and N games resulting
in N rankings; the mth game involves gm disjoint teams. Let Ii

m ⊂ {1, . . . , k} be the ith
ranked team in the mth game, 1 ≤ i ≤ gm, 1 ≤ m ≤ N . We consider the model:

P (I1
m → I2

m → · · · → Igm
m ) =

gm
∏

i=1

∑

s:s∈Ii
m

ps
∑gm

j=i

∑

s:s∈I
j
m

ps
. (33)

Defining

qi
m =

∑

s:s∈Ii
m

ps,
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we minimize the negative log-likelihood function:

min
p

l(p) = −
N
∑

m=1

gm
∑

i=1

log
qi
m

∑gm

j=i q
j
m

(34)

under the constraints in (6).
In fact, (34) is a special case of (6). Each ranking can be viewed as the result of a series

of paired team comparisons: the first ranked team beats the others, the second ranked team
beats the others except the first, and so on; for each paired comparison, ri = 1 and r′i = 0.
Therefore, Algorithm 2 can be applied and the updating rule is:

pt+1
s =

∑

j:s∈Ij
(q

φj(s)
j )−1

∑

j:s∈Ij

∑φj(s)
i=1 (

∑gj

v=i q
v
j )−1

pt
s, (35)

where φj(s) is the rank of the team that individual s belongs to in the jth game and
Ij = ∪gj

i=1I
i
j.

We explain in detail how (35) is derived. Since teams are disjoint in one game and (33)
implies that ties are not allowed, φj(i) is unique under a given i. In the jth game, individual
s appears in φj(s) paired comparisons:

I1
j vs. I2

j ∪ · · · ∪ I
gj

j ,

I2
j vs. I3

j ∪ · · · ∪ I
gj

j ,
...

I
φj(s)
j vs. I

φj(s)+1
j ∪ · · · ∪ I

gj

j .

From (7), the numerator of the multiplicative factor involves winning teams that individual
s is in, so there is only one (i.e., φj(s)) in each game that s joins; the denominator involves

teams of both sides, so it is in the form of
∑φj(s)

i=1 (
∑gj

v=i qv
j )−1.

8. Discussion and Conclusions

We propose a generalized Bradley-Terry model which gives individual skill from group
competition results. We develop a simple iterative method to maximize the log-likelihood
and prove the convergence. The new model has many potential applications. In particular,
minimizing the negative log likelihood of the proposed model coincides with minimizing
the KL distance for multi-class probability estimates under error correcting output codes.
Hence the iterative scheme is useful for finding class probabilities. Similar to the original
Bradley-Terry model, we can extend the proposed generalized model to other settings such
as home-field advantages, ties, and multiple team comparisons.

Investigating more practical applications using the proposed model is certainly an im-
portant future direction. The lack of convexity of l(p) also requires more studies. In Section
5, the “sparse” coding has E(|I+

i |) = E(|I−i |) = k/4, and hence is not covered by Theorem
4 which proves the global optimality. However, this coding is competitive with others in
Section 6. If possible, we hope to show in the future that in general the global optimality
holds.
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Appendix A. Proof of Theorem 1

Define

qt,+
i\s ≡

∑

j∈I+

i
,j 6=s

pt
j , and qt

i\s ≡
∑

j∈I−
i

,j 6=s

pt
j.

Using

− log x ≥ 1 − log y − x/y with equality if and only if x = y,

we have

Q1(ps) ≥ l([pt
1, . . . , p

t
s−1, ps, p

t
s+1, . . . , p

t
k]

T ) with equality if ps = pt,

where

Q1(ps) ≡ −
∑

i:s∈I+

i

ri

(

log(qt,+
i\s

+ ps) −
qt
i\s + ps

qt
i

− log qt
i + 1

)

−

∑

i:s∈I−
i

r′i

(

log(qt,−
i\s + ps) −

qt
i\s + ps

qt
i

− log qt
i + 1

)

= −
∑

i:s∈I+

i

ri log(qt,+
i\s + ps) −

∑

i:s∈I−
i

r′i log(qt,−
i\s + ps) +

∑

i:s∈Ii

(ri + r′i)

(

qt
i\s + ps

qt
i

+ log qt
i − 1

)

.

For 0 < λ < 1, we have

log(λx + (1 − λ)y) ≥ λ log x + (1 − λ) log y with equality if and only if x = y.

With pt
s > 0,

log(qt,+
i\s + ps)

= log

(

qt,+
i\s

qt,+
i

· 1 +
pt

s

qt,+
i

· ps

pt
s

)

+ log(qt,+
i )

≥ pt
s

qt,+
i

(log ps − log pt
s) + log qt,+

i with equality if ps = pt
s.

Then

Q2(ps) ≥ l([pt
1, . . . , p

t
s−1, ps, p

t
s+1, . . . , p

t
k]

T ) with equality if ps = pt
s,
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where

Q2(ps)

≡ −
∑

i:s∈I+

i

ri

(

pt
s

qt,+
i

(log ps − log pt
s) + log qt,+

i

)

−

∑

i:s∈I−
i

r′i

(

pt
s

qt,−
i

(log ps − log pt
s) + log qt,−

i

)

+
∑

i:s∈Ii

(ri + r′i)

(

qt
i\s + ps

qt
i

+ log qt
i − 1

)

.

As we assume pt
s > 0 and

∑

i:s∈Ii
(ri + r′i) > 0, Q2(ps) is a strictly convex function of ps. By

dQ2(ps)/dps = 0,




∑

i:s∈I+

i

ri

qt,+
i

∑

i:s∈I−
i

r′i
qt,−
i





pt
s

ps
=
∑

i:s∈Ii

ri + r′i
qt
i

leads to the updating rule. Thus, if pt+1
s 6= pt

s, then

l(pt+1) ≤ Q2(pt+1
s ) < Q2(pt

s) = l(pt).

Appendix B. Proof of Lemma 2

If the result does not hold, there is an index s̄ and an infinite index set T such that

lim
t∈T,t→∞

pt
s̄ = p∗s̄ = 0.

Since
∑k

s=1 pt
s = 1,∀t and k is finite,

lim
t∈T,t→∞

k
∑

s=1

pt
s =

k
∑

s=1

p∗s = 1.

Thus, there is an index j such that

lim
t∈T,t→∞

pt
j = p∗j > 0. (36)

Under Assumption 1, one of the two conditions linking individual s̄ and j must hold. As
both cases are similar, we consider only the first here. With p∗s̄ = 0 and I+

s0
= {s̄}, we claim

that p∗u = 0,∀u ∈ I−s0
. If this claim is wrong, then

l(pt) = −
m
∑

i=1

(

ri log
qt,+
i

qt
i

+ r′i log
qt,−
i

qt
i

)

≥ −rs0
log

qt,+
s0

qt
s0

= −rs0
log

pt
s̄

pt
s̄ +

∑

u∈I−s0
pt

u

→ ∞ when t ∈ T, t → ∞.
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This result contradicts Theorem 1, which implies l(pt) is bounded above by l(p0). Thus,
p∗u = 0,∀u ∈ Is0

. With I+
s1

⊂ Is0
, we can use the same way to prove p∗u = 0,∀u ∈ Is1

.
Continuing the same derivation, in the end p∗u = 0,∀u ∈ Ist

. Since j ∈ I−st
, p∗j = 0

contradicts (36) and the proof is complete.

Appendix C. Proof of Theorem 3

Recall that we assume limt∈K,t→∞ pt = p∗. For each pt, t ∈ K, there is a corresponding
index s for the updating rule (7). Thus, one of {1, . . . , k} must be considered infinitely many
times. Without loss of generality, we assume that all pt, t ∈ K have the same corresponding
s. If p∗ does not satisfy

∂l(p∗)

∂pj
= 0, j = 1, . . . , k,

starting from s, s+1, . . . , k, 1, . . . , s−1, there is a first component s̄ such that ∂l(p∗)/∂ps̄ 6= 0.
As p∗s̄ > 0, by applying one iteration of Algorithm 2 on p∗s̄, and using Theorem 1, we obtain
p∗+1 6= p∗ and

l(p∗+1) < l(p∗). (37)

Since s̄ is the first index so that the partial derivative is not zero,

∂l(p∗)

∂ps
= 0 = · · · =

∂l(p∗)

∂ps̄−1
.

Thus, at the tth iteration,

lim
t∈K,t→∞

pt+1
s = lim

t∈K,t→∞

∑

i:s∈I+

i

ri

q
t,+

i

+
∑

i:s∈I−
i

r′i
q

t,−

i

∑

i:s∈Ii

ri+r′
i

qt
i

pt
s =

∑

i:s∈I+

i

ri

q
∗,+

i

+
∑

i:s∈I−
i

r′i
q
∗,−

i

∑

i:s∈Ii

ri+r′
i

q∗
i

p∗s = p∗s

and hence

lim
t∈K,t→∞

pt+1 = lim
t∈K,t→∞

pt = p∗.

Assume s̄ corresponds to the t̄th iteration, by a similar derivation,

lim
t∈K,t→∞

pt+1 = · · · = lim
t∈K,t→∞

pt̄ = p∗

and

lim
t∈K,t→∞

pt̄+1 = p∗+1.

Thus, with (37),

lim
t∈K,t→∞

l(pt̄+1) = l(p∗+1) < l(p∗)

contradicts the fact that

l(p∗) ≤ · · · ≤ l(pt),∀t.
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Appendix D. Proof of Theorem 4

The first case reduces to the original Bradley-Terry model, so we can directly use existing
results. As explained in Section 3, Assumption 1 goes back to (Hunter, 2004, Assumption
1). Then the results in Section 4 of (Hunter, 2004) imply that (6) has a unique global
minimum and Algorithm 2 globally converges to it.

For the second case, as qi =
∑k

j=1 pj = 1, l(p) can be reformulated as

l̄(p) = −
m
∑

i=1

(ri log q+
i + r′i log q−i ), (38)

which is a convex function of p. Then solving (6) is equivalent to minimizing (38). One
can also easily show that they have the same set of stationary points.

From Assumption 1, for each pj, there is i such that either I+
i = {s} with ri > 0, or

I−i = {s} with r′i > 0. Therefore, either −ri log ps or −r′i log ps appears in (38). Since they
are strictly convex functions of ps, the summation on all s = 1, . . . , k makes (38) a strictly
convex function of p. Hence (6) has a unique global minimum, which is also (6)’s unique
stationary point. From Theorem 3, Algorithm 2 globally converges to this unique minimum.

Appendix E. Solving Nonlinear Equations for the “One-against-the-rest”

Approach

We show that if δ 6= 0, ps defined in (19) satisfies 0 ≤ ps ≤ 1. If δ > 0, then

(1 + δ) ≥
√

(1 + δ)2 − 4rsδ,

so ps ≥ 0. The situation for δ < 0 is similar. To prove ps ≤ 1, we consider three cases:

1. δ ≥ 1.
Clearly,

ps =
(1 + δ) −

√

(1 + δ)2 − 4rsδ

2δ
. ≤ 1 + δ

2δ
≤ 1.

2. 0 < δ < 1.
With 0 ≤ rs ≤ 1, we have 4δ − 4rsδ ≥ 0 and

(1 + δ)2 − 4rsδ ≥ 1 − 2δ + δ2.

Using 0 < δ < 1,

ps =
(1 + δ) −

√

(1 + δ)2 − 4rsδ

2δ
. ≤ 1 + δ − (1 − δ)

2δ
= 1.

3. δ < 0.
Now 4δ − 4rsδ ≤ 0, so

0 ≤ (1 + δ)2 − 4rsδ ≤ 1 − 2δ + δ2.

Then
−
√

(1 + δ)2 − 4rsδ ≥ δ − 1.

Adding 1 + δ on both sides and dividing them by 2δ leads to ps ≤ 1.
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To find δ by solving
∑k

s=1 ps − 1 = 0, the discontinuity at δ = 0 is a concern. A simple
calculation shows

lim
δ→0

k
∑

s=1

(1 + δ) −
√

(1 + δ)2 − 4rsδ

2δ
− 1 =

k
∑

s=1

rs − 1.

One can thus define the following continuous function:

f(δ) =

{
∑k

s=1 rs − 1 if δ = 0,
∑k

s=1
(1+δ)−

√
(1+δ)2−4rsδ

2δ
− 1 otherwise.

Since

lim
δ→−∞

f(δ) = k − 1 > 0 and lim
δ→∞

f(δ) = −1 < 0,

f(δ) = 0 has at least one root. Next we show that f(δ) is strictly decreasing: Consider
δ 6= 0, then

f ′(δ) =
k
∑

s=1

−1 + 1+δ−2rsδ√
(1+δ)2−4rsδ

2δ2
.

If 1+δ−2rsδ ≤ 0, then of course f ′(δ) < 0. For the other case, first we use −4rsδ
2+4r2

sδ
2 < 0

to obtain

(1 + δ)2 − 4rsδ(1 + δ) + 4r2
sδ

2 < (1 + δ)2 − 4rsδ.

Since 1 + δ − 2rsδ > 0, taking the square root on both sides leads to f ′(δ) < 0.

Therefore,

f(δ) = 0 has a unique solution at δ > 0 (< 0) if

k
∑

s=1

rs − 1 > 0 (< 0).

Appendix F. Update θ for Models with Home-field Advantages or Ties

For the Home-field model, we use the “minorizing”-function approach in (Hunter, 2004):

Terms of l(pt, θ) related to θ

= −
m
∑

i=1

(

(r̄i + r̃′i) log θ − (r̄i + r̄′i) log(θq+
i + q−i ) − (r̃i + r̃′i) log(q+

i + θq−i )
)

≤ −
m
∑

i=1

(

(r̄i + r̃′i) log θ − (r̄i + r̄′i)
(

−1 + log(θtq+
i + q−i ) +

θq+
i + q−i

θtq+
i + q−i

)

−(r̃i + r̃′i)
(

−1 + log(q+
i + θtq−i ) +

q+
i + θq−i

q+
i + θtq−i

)

)

≡ Q(θ).

The inequality becomes equality if θ = θt. Thus, Q′(θ) = 0 leads to (28) and l(pt, θt+1) <
l(pt, θt).
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For the model which allows ties, we again define a minorizing function of θ.

Terms of l(pt, θ) related to θ

= −
m
∑

i=1

(

ti log(θ2 − 1) − (ri + ti) log(q+
i + θq−i ) − (r′i + ti) log(θq+

i + q−i )
)

≤ −
m
∑

i=1

(

ti log(θ2 − 1) − (ri + ti)

(

1 + log(q+
i + θtq−i ) +

q+
i + θq−i

q+
i + θtq−i

)

−(r′i + ti)

(

1 + log(θtq+
i + q−i ) +

θq+
i + q−i

θtq+
i + q−i

))

≡ Q(θ).

Then Q′(θ) = 0 implies

m
∑

i=1

(

2θti
θ2 − 1

− (ri + ti)q
−
i

q+
i + θtq−i

− (r′i + ti)q
+
i

θtq+
i + q−i

)

= 0

and hence θt+1 is defined as in (31).
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