
Large-scale Linear RankSVM

Ching-Pei Lee and Chih-Jen Lin

Department of Computer Science, National Taiwan University, Taipei 10617, Tai-
wan

Keywords: Learning to rank, Ranking support vector machines, Large-scale
learning, Linear model

Abstract

Linear rankSVM is one of the widely used methods for learning to rank. Although
its performance may be inferior to nonlinear methods such as kernel rankSVM and
gradient boosting decision trees, linear rankSVM is useful to quickly produce a
baseline model. Furthermore, following the recent development of linear SVM for
classification, linear rankSVM may give competitive performance for large and
sparse data. Many existing works have studied linear rankSVM. Their focus is
on the computational efficiency when the number of preference pairs is large. In
this paper, we systematically study past works, discuss their advantages/disad-
vantages, and propose an efficient algorithm. Different implementation issues and
extensions are discussed with detailed experiments. Finally, we develop a robust
linear rankSVM tool for public use.

1 Introduction

Learning to rank is an important supervised learning technique in recent years,
because of its application to search engines and online advertisement. According
to Chapelle and Chang (2011) and others, state of the art learning to rank models
can be categorized into three types. Pointwise methods, for example, decision tree
models and linear regression, directly learn the relevance score of each instance;
pairwise methods like rankSVM (Herbrich et al., 2000) learn to classify preference
pairs; listwise methods such as LambdaMART (Burges, 2010) try to optimize the
measurement for evaluating the whole ranking list. Some methods lie between two
categories, for example, GBRank (Zheng et al., 2007) combines pointwise decision
tree models and pairwise loss. Among them, rankSVM, as a pairwise approach,
is one commonly used method. This method is extended from standard support
vector machine (SVM) by Boser et al. (1992) and Cortes and Vapnik (1995). In
SVM literature, it is well known that linear (i.e., data are not mapped to a different
space) and kernel SVMs are suitable for different scenarios, where linear SVM is
more efficient, but the more costly kernel SVM may give higher accuracy.1 The
same situation may occur for rankSVM. In this paper, we aim to study large-scale
linear rankSVM.

1See, for example, Yuan et al. (2012) for more detailed discussion.

Notation Explanation
w The weight vector obtained by solving (2) or (3)
xi The feature vector of the i-th training instance
yi Label of the i-th training instance
qi Query of the i-th training instance
K The set of relevance levels
Q The set of queries
P The set of preference pairs; see (1)
l Number of training instances
k Number of relevance levels
p Number of preference pairs
n Number of features
n̄ Average number of non-zero features per instance
lq Number of training instances in a given query
kq Number of relevance levels in a given query
T An order-statistic tree

Table 1: Notation

Assume we are given a set of training label-query-instance tuples (yi, qi,xi), yi ∈
K ⊂ R, qi ∈ Q ⊂ Z,xi ∈ Rn, i = 1, . . . , l, where K is the set of possible relevance
levels with |K| = k and Q is the set of queries. By defining the set of preference
pairs as

P ≡ {(i, j) | qi = qj, yi > yj} with p ≡ |P |, (1)

L1-loss linear rankSVM minimizes the sum of training losses and a regularization
term.

min
w

1

2
wTw + C

∑
(i,j)∈P

max
(
0, 1−wT (xi − xj)

)
, (2)

where C > 0 is a regularization parameter. If L2 loss is used, then the optimization
problem becomes

min
w

1

2
wTw + C

∑
(i,j)∈P

max
(
0, 1−wT (xi − xj)

)2
. (3)

In prediction, for any test instance x, a larger wTx implies that x should be
ranked higher. In Table 1, we list the notation used in this paper.

The sum of training losses can be written in the following separable form.∑
q∈Q

∑
(i,j):qi=qj=q

yi>yj

max
(
0, 1−wT (xi − xj)

)
.

Because each query involves an independent training subset, the outer summation
over all q ∈ Q can be easily handled. Therefore, in our discussion, we assume a
single query in the training set. Hence, if on average l/k instances are with the

2

same relevance level, the number of pairs in P is(
k

2

)
×O

((
l

k

)2
)

= O(l2). (4)

The large number of pairs becomes the main difficulty to train rankSVM. Many
existing studies have attempted to address this difficulty. By taking the property
that

yi > yj and yj > ys ⇒ yj > ys, (5)

it is possible to avoid the O(l2) complexity of going through all pairs in calculating
the objective function, gradient or other information needed in the optimization
procedure. Interestingly, although existing works apply different optimization
methods, their approaches to avoid considering the O(l2) pairs are very related.
Next we briefly review some recent results. Joachims (2006) solves (2) by a cutting
plane method, in which an

O(ln̄+ l log l + lk + n) (6)

method is proposed to calculate the objective value and a sub-gradient of problem
(2). The O(ln̄) cost is for calculating wTxi, ∀i, where n̄ is the average number
of non-zero features per training instance; O(l log l+ lk) is for the sum of training
losses in problem (2); O(n) is for the regularization term wTw/2. This method
is efficient if k (number of relevance levels) is small, but becomes inefficient when
k = O(l). Airola et al. (2011) improve upon Joachims’ work by reducing the
complexity to

O(ln̄+ l log l + l log k + n).

The main breakthrough is that they employ order-statistic trees, which are ex-
tended from balance binary search trees, so the O(lk) term in Equation (6) is
reduced to O(l log k). Another type of optimization methods considered is the
truncated Newton methods for solving problem (3), in which the main compu-
tation is on Hessian-vector products. Chapelle and Keerthi (2010) showed that
if k = 2 (i.e., only two relevance levels), the cost of each function, gradient, or
Hessian-vector product evaluation is O(ln̄ + l log l + n). Their method is related
to that by Joachims (2006), because we can see that the O(lk) term in (6) can be
removed if k = 2. For k > 2, they decompose the problem into k−1 sub-problems
that each has only two relevance levels. Therefore, similar to Joachims’ approach,
Chapelle and Keerthi’s approach may not be efficient for larger k. Regarding op-
timization methods, an advantage of Newton methods is the faster convergence.
However, they require the differentiability of the objective function, so L2 loss
must be used. In contrast, cutting plane methods are applicable to both L1 and
L2 losses.

Although linear rankSVMs is an established method, it is known that gradi-
ent boosting decision trees (GBDT) by Friedman (2001) and its variant, Lamb-
daMART (Burges, 2010), give competitive performance on web-search ranking
data. In addition, random forests (Breiman, 2001) is also reported in Mohan
et al. (2011) to perform well. Actually all the winning teams of Yahoo Learning

3

to Rank Challenge (Chapelle and Chang, 2011) use decision tree based ensemble
models. Note that GBDT and random forests are nonlinear pointwise methods
and LambdaMART is a nonlinear listwise method. Their drawback is the longer
training time. We will conduct experiments to compare the performance and
training time between linear and nonlinear ranking methods.

In this paper, we consider Newton methods for solving problem (3) and present
the following results.
1. We give a clear overview and connection of past works on the efficient calcula-

tion over all relevance pairs.
2. We investigate several order-statistic tree implementations and show their ad-

vantages and disadvantages.
3. We finish an efficient implementation that is faster than existing works for

linear rankSVM.
4. We detailedly compare between linear rankSVM and linear/nonlinear pointwise

methods including GBDT and random forests.
5. We release a public tool for linear rankSVM.

This paper is organized as follows. Section 2 introduces methods for the effi-
cient calculation over all relevance pairs. Section 3 discusses former studies of
linear rankSVM, and compares them with our method. Various types of ex-
periments are shown in Section 4. In Section 5 we discuss another possible
algorithms for rankSVMs when k is large. Section 6 concludes the paper. A
supplementary file including additional analysis and experiments is available at
http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/supplement.pdf.

2 Efficient Calculation Over Relevance Pairs

As mentioned in Section 1, a difficulty to train rankSVM is that the number of pairs
in the loss term can be as large as O(l2). This difficulty occurs in any optimization
method that needs to calculate the objective value. Further, other values used in
optimization procedures such as sub-gradient, gradient, or Hessian-vector products
face the same difficulty. In this section, we consider truncated Newton methods
as an example and investigate efficient methods for the calculation over pairs.

2.1 Information Needed in Optimization Procedures and
An Example Using Truncated Newton Methods

Many optimization methods employ gradient or even higher-order information
at each iteration of an iterative procedure. From (2)-(3), it is clear that the
summation over the p pairs remains in the gradient and the Hessian. Therefore,
the difficulty of handling O(l2) pairs occurs beyond the calculation of the objective
value. Here, we consider the truncated Newton method as an example to see what
kind of information it requires.

A Newton method obtains a direction at the t-th iteration by solving

min
s

gt(s),

4

http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/supplement.pdf

ALGORITHM 1: Truncated Newton methods
1. Given w0.
2. For t = 0, 1, 2, . . .

2.1. If the stopping condition is satisfied,
return wt.

2.2. Apply CG iterations to solve (8) together with some additional
constraints for ensuring convergence. A truncated Newton step is
obtained.

2.3. wt+1 ← wt + s.

where

gt(s) ≡ ∇f(wt)Ts+
1

2
sT∇2f(wt)s, (7)

and updates wt by
wt+1 = wt + s.

Note that gt(s) is the second-order Taylor approximation of f(wt +s)− f(wt). If
∇2f(wt) is invertible, the step s is obtained by solving the following linear system.

∇2f(wt)s = −∇f(wt). (8)

To ensure the convergence, usually line search or trust region technique is applied
to obtain a truncated Newton step. For machine learning applications, ∇2f(w) is
often too large to be stored, so conjugate gradient (CG) method is a common way
to solve (8) by taking the special structure of ∇2f(w) into account (e.g., Keerthi
and DeCoste (2005); Lin et al. (2008).) At each CG iteration, we only need to
calculate a Hessian-vector product

∇2f(wt)v, for some vector v,

and it can be performed without storing the Hessian matrix. Then the algorithm
contains two levels of iterations. The outer one generates {wt}, while from wt to
wt+1 there are inner CG iterations. Algorithm 1 gives the framework of truncated
Newton methods.

The discussion shows that in a truncated Newton method, the calculation
of objective value, gradient and Hessian-vector product all face the difficulty of
handling p pairs. In the rest of this section, we will discuss the efficient calculation
of these values.

2.2 Efficient Function/Gradient Evaluation and Matrix-
vector Products

We consider L2-loss linear rankSVM (3) and discuss details of calculating function,
gradient, and Hessian-vector products, which are the computational bottlenecks
in Newton methods. In the rest of this paper, if not specified, f(w) represents the
objective function of (3).

5

To indicate the preference pairs, we define a p by l matrix

A ≡

· · · i · · · j · · ·
...

(i, j)
...

 0 · · · 0 +1 0 · · · 0 −1 0 · · · 0

 .

That is, if (i, j) ∈ P then a corresponding row in A has that the i-th entry is 1, the
j-th entry is −1, and other entries are all zeros. By this definition, the objective
function in (3) can be written as

f(w) =
1

2
wTw + C(e− AXw)TDw(e− AXw), (9)

where e ∈ Rp×1 is a vector of ones,

X ≡ [x1, . . . ,xl]
T ,

and Dw is a p by p diagonal matrix with for all (i, j) ∈ P ,

(Dw)(i,j),(i,j) ≡

{
1 if 1−wT (xi − xj) > 0,

0 otherwise.

The gradient is

∇f(w) = w − 2C
∑

(i,j)∈P

(xi − xj) max
(
0, 1− (xi − xj)Tw

)
= w + 2CXT (ATDwAXw − ATDwe). (10)

However, ∇2f(w) does not exist because (10) is not differentiable. Following
Mangasarian (2002) and Lin et al. (2008), we define a generalized Hessian matrix

∇2f(w) ≡ I + 2CXTATDwAX, (11)

where I is the identity matrix.
The main computation at each CG iteration is a Hessian-vector product. For

any vector v ∈ Rn, the truncated Newton method PRSVM by Chapelle and
Keerthi (2010) calculates

∇2f(w)v = v + 2CXT

(
AT
(
Dw
(
A(Xv)

)))
. (12)

Because A and Dw both have O(p) non-zero elements, the complexity of calculat-
ing (12) is

O(ln̄+ p+ n). (13)

The right-to-left matrix-vector products in (12) are faster than O(pn̄) if we obtain
and store the matrix XTATDwAX.

6

However, if p = O(l2), not only is the cost of (12) still high but also the storage
of A and Dw requires a huge amount of memory. To derive a faster method, it is
essential to explore the structure of the generalized Hessian. We define

SV(w) ≡ {(i, j) | (i, j) ∈ P, 1−wT (xi−xj) > 0}, and pw ≡ |SV(w)|. (14)

We show in Appendix A that when (3) is treated as an SVM classification problem
with feature vectors xi − xj and labels being 1 for all (i, j) ∈ P , the set SV(w)
corresponds to the support vectors.

We then remove the matrix Dw by defining a new matrix Aw ∈ Rpw×l such
that

ATwAw = ATDwA,

where Aw includes rows of A such that (i, j) ∈ SV(w). Thus (12) becomes

∇2f(w)v = v + 2CXTATwAwXv. (15)

Observe that
(ATwAw)i,j =

∑
s

(Aw)s,i(Aw)s,j. (16)

Because each row of Aw contains two non-zero elements, (Aw)s,i(Aw)s,j 6= 0 occurs
only under the following situations.

(Aw)s,i, (Aw)s,j

=

1, 1 if i = j and s corresponds to (i, t) ∈ SV(w) for some 1 ≤ t ≤ l,

−1,−1 if i = j and s corresponds to (t, i) ∈ SV(w) for some 1 ≤ t ≤ l,

1,−1 if i 6= j and s corresponds to (i, j) ∈ SV(w),

−1, 1 if i 6= j and s corresponds to (j, i) ∈ SV(w).

We define

SV+
i (w) ≡ {j | (j, i) ∈ SV(w)}, l+i (w) ≡ |SV+

i (w)|, γ+i (w,v) ≡
∑

j∈SV+
i (w)

xTj v,

SV−i (w) ≡ {j | (i, j) ∈ SV(w)}, l−i (w) ≡ |SV−i (w)|, γ−i (w,v) ≡
∑

j∈SV−i (w)

xTj v.

Then from (16),

(ATwAw)i,j =

l+i (w) + l−i (w) if i = j,

−1 if i 6= j, and (i, j) or (j, i) ∈ SV(w),

0 otherwise.

Hence,

(ATwAwXv)i =
l∑

j=1

(ATwAw)i,j(Xv)j

=
(
l+i (w) + l−i (w)

)
xTi v −

∑
j∈SV+

i (w)

xTj v −
∑

j∈SV−i (w)

xTj v.

7

Therefore,

XTATwAwXv = XT

(
l+1 (w) + l−1 (w)

)
xT1 v −

(
γ+1 (w,v) + γ−1 (w,v)

)
...(

l+l (w) + l−l (w)
)
xTl v −

(
γ+l (w,v) + γ−l (w,v)

)
 . (17)

If we already have the values of l+i (w), l−i (w), γ+i (w,v) and γ−i (w,v), the com-
putation of the Hessian-vector product in (15) would just cost O(ln̄ + n), where
O(ln̄) is for computing (17), and O(n) is for the vector addition in (15).

Similarly, function and gradient evaluations can be more efficient by reformu-
lating (9) and (10) to the following forms, respectively.

f(w) =
1

2
wTw + C(AwXw − ew)T (AwXw − ew)

=
1

2
wTw + C(wTXT (ATwAwXw − 2ATwew) + pw), (18)

and
∇f(w) = w + 2CXT (ATwAwXw − ATwew), (19)

where ew ∈ Rpw×1 is a vector of ones. In (18) and (19), ATwAwXw can be
calculated by (17). We also have

ATwew =

 l−1 (w)− l+1 (w)
...

l−l (w)− l+l (w)

 , and pw =
l∑

i=1

l+i (w) =
l∑

i=1

l−i (w).

Thus the computation of (18) and (19) both cost O(ln̄+ n) as well.
Note that for solving (2) by cutting plane methods, Joachims (2006) and Airola

et al. (2011) have identified that l+i (w) and l−i (w) are needed for efficient function
and sub-gradient evaluation; see more details in Section 3.2. Therefore, regardless
of optimization methods used, an important common task is to efficiently calcu-
late l+i (w), l−i (w), γ+i (w,v), and γ−i (w,v). In the supplementary materials, we
detailedly discuss a direct method that costs O(l+k) space excluding the training
data and

O(ln̄+ lk + n) (20)

time for one matrix-vector product. Although the cost is lower than that by
(12), the O(lk) complexity is still high if k is large. Subsequently, we will discuss
methods to reduce the O(lk) term to O(l log k).

2.3 Efficient Calculation by Storing Values in an Order-
statistic Tree

Airola et al. (2011) calculate l+i (w) and l−i (w) by an order-statistic tree, so the
O(lk) term in (20) is reduced to O(l log k). The optimization method used is a
cutting plane method (Teo et al., 2010), which calculates function and sub-gradient

8

values. Our procedure here is an extension because in Newton methods we further
need Hessian-vector products. Notice that Airola et al. (2011) considered problem
(2) while we solve problem (3) and require the computation of γ+i (w,v) and
γ−i (w,v) additionally.

To find l+i (w), we must count the cardinality of the following set.

SV+
i (w) = {j | yj > yi,w

Txj < w
Txi + 1}.

The main difficulty is that both the order of yi and the order of wTxi are involved.
We can first sort wTxi in ascending order. For easier description, we assume that

wTx1 ≤ · · · ≤ wTxl. (21)

We observe that if elements in

{j | wTxj < w
Txi + 1} (22)

have been properly arranged in an order-statistic tree T by the value of yj, then
l+i (w) can be obtained in O(log k) time. Consider the following example.

i 1 2 3 4 5 6 7 8 · · ·
yi 4 7 9 9 2 11 5 7 · · ·

When i = 1, we assume

{j | wTxj < w
Tx1 + 1} = {1, 2, 3, 4, 5, 6}. (23)

We construct a tree in Figure 1a so that each node includes{
key : yj,

size : number of instances in tree(yj),
(24)

where
tree(y) ≡ tree with root y,

and nodes are arranged according to the keys (i.e., yj values). For each node, we
ensure that its right child has a larger key than its left child and the node itself.
Clearly, for any node y,

size(y)

=

{
|{j | yj = y, j ∈ T}| if y is a leaf,

size(y’s left child) + size(y’s right child) + |{j | yj = y, j ∈ T}| otherwise.

(25)

By j ∈ T , we mean the instance j has been inserted to the tree T .
To find l+i (w), we traverse from the root of T to the node yi by observing that

|{j | yj > yi and j ∈ tree(y)}|

=

|{j | yj > yi and j ∈ tree(y’s right child)}| if y ≤ yi,

|{j | yj > yi and j ∈ tree(y’s left child)}|
+ size(y)− size(y’s left child) if y > yi.

9

(7, 6)

(2, 2)

(4, 1)

(9, 3)

(11, 1)

(a) An example of arranging
elements of the set (23) in
a tree. Each node contains
(yj , size(yj)).

(7, 6)

(2, 2)

(4, 1)

(9, 3)

(11, 1)

(b) If y1 = 4, we find l+1 (w) by
Larger(7, 4) = Larger(2, 4) +
6− 2 = Larger(4, 4) + 4 = 4.

Figure 1: An illustration of using an order-statistic tree to calculate l+i (w)

Therefore, once a tree for the set (22) has been constructed, we can define the
following function.

Larger(y, yi) ≡ |{j | yj > yi, j ∈ tree(y)}|

=

0 if y is a leaf, and y ≤ yi,

size(y) if y is a leaf, and y > yi,

size(y’s right child) if y = yi,

Larger(y’s left child, yi)

+ size(y)− size(y’s left child) if y > yi,

Larger(y’s right child, yi) if y < yi.

(26)

We explain that (26) utilizes the idea of (5) on y. In the last case of (26), for any
t in the left of y,

yt < y

by the way we construct the tree. Then with

y < yi,

we have
yt < yi,

so nodes on the left are not considered. Using (26), we have

l+i (w) = Larger
(
root of T , yi

)
.

An example to traverse the tree for finding l+1 (w) is in Figure 1b.
Once l+i (w) has been calculated, we move on to insert the following instances

into the tree.
{j | wTxi + 1 ≤ wTxj < w

Txi+1 + 1}.
Then, l+i+1(w) can be calculated by the same way. The calculation for l−i (w) is
similar. Because

SV−i (w) = {j | yj < yi,w
Txj > w

Txi − 1},

10

ALGORITHM 2: Obtaining l+i (w), l−i (w), γ+i (w,v) and γ−i (w,v) using
an order-statistic tree

1. Given X, w and v, compute Xw and Xv.
2. Sort wTxi in ascending order: wTxπ(1) ≤ · · · ≤ wTxπ(l).
3. j ← 1, T ← an empty order-statistic tree.
4. For i = 1, . . . , l

4.1. While j ≤ l and 1−wTxπ(j) +wTxπ(i) > 0
4.1.1. Insert (yπ(j),x

T
π(j)v) into T .

4.1.2. j ← j + 1.
4.2.

(
l+π(i)(w), γ+π(i)(w,v)

)
← Larger(root of T , yπ(i)).

5. j ← l, T ← an empty order-statistic tree.
6. For i = l, . . . , 1

6.1. While j ≥ 1 and 1−wTxπ(i) +wTxπ(j) > 0
6.1.1. Insert (yπ(j),x

T
π(j)v) into T .

6.1.2. j ← j − 1.
6.2.

(
l−π(i)(w), γ−π(i)(w,v)

)
← Smaller(root of T , yπ(i)).

we start from l and maintain a tree of the following set.

{j | wTxj > w
Txi − 1}.

We then define a function Smaller(y, yi) similar to Larger(y, yi) to obtain l−i (w).
For the calculation of γ+i (w,v) and γ−i (w,v), notice that

l+i (w) =
∑

j∈SV+
i (w)

1, and γ+i (w,v) =
∑

j∈SV+
i (w)

xTi v. (27)

and
size(y) =

∑
j:j∈tree(y)

1.

At each node of the tree we can store a value xv(y) so that it follows a relation
like (25).

xv(y) ≡
∑

j:j∈tree(y)

xTj v

=

{∑
j:j∈T,yj=y x

T
j v if y has no child,

xv(y’s left child) + xv(y’s right child) +
∑

j:j∈T,yj=y x
T
j v otherwise.

(28)

The function Larger(y, yi) defined in (26) can be directly extended to output both
l+i (w) and γ+i (w,v).

Details of the overall procedure are presented in Algorithm 2. For binary
search trees, we can consider, for example, AVL tree (Adelson-Velsky and Landis,
1962), red-black tree (Bayer, 1972), and AA tree (Andersson, 1993). These trees
are reasonably balanced so that each insertion and computation of Larger/Smaller

11

functions all cost O(log k); see more discussion in Section 2.5. If wTxi have been
sorted before CG iterations, each matrix-vector product involves

O(ln̄+ l log k + n) (29)

operations, which are smaller than Equation (20) because the lk term is reduced
to l log k. Therefore, the cost of truncated Newton methods using order-statistic
trees is

(O(l log l) +O(ln̄+ l log k + n)× average #CG iterations)×#outer iterations,

where the O(l log l) term is the cost of sorting.
Our algorithm constructs a tree for each matrix-vector product (or each CG

iteration) because of the change of the vector v in (17). Thus an outer itera-
tion of truncated Newton method requires constructing several trees. If we store∑

j:j∈tree(y) xj instead of xv(y) at each node, only one tree independent of v is
needed at an outer iteration. However, because a vector is stored at a node, each
update requires O(n̄) cost. The total cost of maintaining the tree is O(n̄l log k) be-
cause each insertion requires O(log k) updates. This is bigger than O(l log k+ ln̄)
for a tree of storing xv(y). Further, we need O(ln) space to store vectors.2 Be-
cause the number of matrix-vector products is often not large, storing xv(y) is
more suitable.

Besides, instead of sorting wTxi and using yi as the keys, we may alternatively
sort yi such that

yπ(1) ≤ · · · ≤ yπ(l), (30)

and for yπ(i) maintain a tree T of the following set.

{j | yπ(j) > yπ(i)}.

Then we can apply the same approach as above. An advantage of this approach is
that yi are fixed and only need to be sorted once in the whole training procedure.
However, wTxi become keys of nodes and are in general different, so the tree will
eventually contain O(l) rather than O(k) nodes. Therefore, this approach is less
preferred because maintaining a smaller tree is essential.

2.4 A Different Implementation by Storing Keys in Leaves
of a Tree

Although the method in Section 2.3 successfully reduces the complexity, main-
taining the trees makes the implementation more complicated. In this section,
we consider a simpler method which doubles the size of the tree and stores all
instances in leaf nodes. This setting is similar to a selection tree (Knuth, 1973).
We ensure that the k leaf nodes from left to right correspond to the ascending
order of relevance levels. At a leaf node, we record the size and xv of a relevance
level. For each internal node, which is the root of a sub-tree, its size and xv are
both the sum of that attribute of its children. For the same example considered

2Note that
∑

j:j∈tree(y) xj is likely to be dense even if each xj is sparse.

12

y = 2

size = 1

y = 4

size = 1

y = 7

size = 1

y = 9

size = 2

y = 11

size = 1

size = 2 size = 3 size = 1

size = 5 size = 1

size = 6

Figure 2: An example of storing yj in leaf nodes.

y = 2

size = 1

y = 4

size = 1

y = 7

size = 1

y = 9

size = 2

y = 11

size = 1

size = 2 size = 3 size = 1

size = 5 size = 1

size = 6

0

3
3

1
4

Figure 3: An example of finding l+1 (w) when storing yj in leaf nodes. Note that
we assume y1 = 4.

in Section 2.3, the tree at i = 1 is shown in Figure 2. To compute l+i (w), we know
that

|{j | yj > yi}| = sum of the size attribute of leaf nodes on the right side of yi.

Therefore, for any node s in the tree, we can define

Larger(s) ≡ sum of the size attribute of leaf nodes on the right of s

=

Larger(parent of s) + size(sibling of s) if s is the left child,

Larger(parent of s) if s is the right child,

0 if s is the root,

and let
l+i (w) = Larger(the leaf node with key = yi).

An illustration of finding l+1 (w) is in Figure 3. The procedures for obtaining
l−i (w), γ+i (w,v) and γ−i (w,v) are all similar.

An advantage of this approach is that because all yj are stored in leaves, it is
easier to maintain the trees. See more discussion in Section 2.5. In Section 4.3,
we will experimentally compare this approach with the method in Section 2.3.

13

2.5 A Discussion on Tree Implementations

For the method in Section 2.3, where each node has a key, we can consider balanced
binary search trees such as AVL tree, red-black tree and AA tree. It is known that
AVL trees use more complicated insertion operations to ensure being balanced.
Consequently, the insertion is slower but the order-statistic computation is usually
faster compared to other order-statistic trees. In the comparison by Heger (2004),
an AA tree tends to be more balanced and faster than a red-black tree. However,
previous studies also consider node deletions, which are not needed here, so we
conduct an experiment in Section 4.3.

For the method in Section 2.4 to store keys in leaves, we have mentioned that
the selection tree is a suitable data structure. Note that selection trees were mainly
used for sorting, but using it as a balanced binary search tree is a straightforward
adaptation. An implementation method introduced in Knuth (1973) is to transfer
k possible yi values to 2dlog2 ke, 2dlog2 ke + 1 . . . , 2dlog2 ke + k − 1, and let the indices
of the internal nodes be 1, 2, . . . , 2dlog2 ke − 1. Then for any node m, its parent is
the node bm

2
c. Moreover, if m is an odd number then it is a right child, and vice

versa. By this method, we do not need to use pointers for constructing the tree
and thus the implementation is very simple. Another advantage is that this tree
is fully balanced so each leaf is of the same depth.

3 Comparison with Existing Methods

In this section, we introduce recent studies of linear rankSVM that are considered
state of the art. Some of them have been mentioned in Section 2 in compared
with our proposed methods.

3.1 PRSVM and PRSVM+

We have discussed PRSVM by Chapelle and Keerthi (2010) in the beginning of Sec-
tion 2.2. The complexity shown in (13) has a term O(p), which becomes dominant
for large p. To reduce the cost, Chapelle and Keerthi (2010) proposed PRSVM+ for
solving (3) by a truncated Newton method. They first consider the case of k = 2
(i.e., two relevance levels). The algorithm for calculating l+i (w), l−i (w), γ+i (w,v)
and γ−i (w,v) is related to Joachims (2005) and is a special case of a direct count-
ing method discussed in the supplementary material. For the general situation,
they observe that∑

(i,j)∈P

max
(
0, 1−wT (xi − xj)

)2
=
∑
r∈K

∑
(i,j)∈P
yi>r,
yj=r

max
(
0, 1−wT (xi − xj)

)2
.

The inner sum is for a subset of data in two relevance levels (r and > r). Then the
algorithm for two-level data can be applied. By replacing the O(lk) term in (20)
with O(size of each two-level set), the complexity of each matrix-vector product

14

is
O(ln̄+ n) +

∑
r∈K

O(|{(i, j) | (i, j) ∈ P, yi > r, yj = r}|). (31)

If each relevance level takes about the same amount of O(l/k) data, (31) becomes

O(ln̄+ n) +
k∑

m=2

O

(
lm

k

)
= O(ln̄+ lk + n), (32)

which is larger than the approach of using order-statistic trees.

3.2 TreeRankSVM

Joachims (2006) uses a cutting plane method to optimize (2). Airola et al. (2011)
improve upon Joachims’ work, and release a package TreeRankSVM.

Here we follow Teo et al. (2010, Section 2) to describe the cutting plane method
for minimizing a function

1

2
wTw + L(w),

where L(w) is the loss term. Let wt be the solution obtained at the t-th iteration.
The first-order Taylor approximation of L(w) is used to build a cutting plane
aTt w + bt at w = wt:

L(w) ≥ ∇L(wt)T (w −wt) + L(wt)

= aTt w + bt, ∀w,

where
at ≡ ∇L(wt) and bt ≡ L(wt)− aTt wt.

If L(w) is non-differentiable, then a sub-gradient is used for at. The cutting plane
method maintains am, bm, m = 1, . . . , t to form a lower-bound function for L(w):

LCP
t (w) ≡ max

1≤m≤t
(aTmw + bm),

and obtains wt+1 by solving

wt+1 = arg min
w

1

2
wTw + LCP

t (w). (33)

For rankSVM, if problem (2) is considered, a sub-gradient of its loss term is

∇s(C
∑

(i,j)∈P,1−wT (xi−xj)>0

(
1−wT (xi − xj)

)
= C

∑
(i,j)∈P,1−wT (xi−xj)>0

(xi − xj)

= C

l∑
i=1

(
l+i (w)− l−i (w)

)
xi. (34)

15

The function value also needs to be evaluated during the optimization procedure.

1

2
wTw + C

∑
(i,j)∈P,1−wT (xi−xj)>0

(
1−wT (xi − xj)

)
=

1

2
wTw + C

l∑
i=1

(
l+i (w)− l−i (w)

)
wTxi.

For obtaining l+i (w) and l−i (w), Joachims (2006) uses a direct counting method
and the complexity at each iteration is shown in (6). We leave the details in the
supplementary materials. As mentioned in Section 2.3, the main improvement
made by Airola et al. (2011) is to use order-statistic trees so that the O(lk) term
in calculating l+i (w) and l−i (w), ∀i is reduced to O(l log k). In particular, red-black
trees were adopted in their work. The overall cost is(

O(l log l + ln̄+ l log k + n) + cost of (33)
)
×#iterations.

3.3 sofia-ml

Sculley (2009) proposed sofia-ml to solve problem (2). It is a stochastic gradient
descent (SGD) method that randomly draws a preference pair from the training
set at each iteration, and uses a sub-gradient on this pair to update w. This
method does not consider the special structure of the loss term. For going through
the whole training data, the cost is O(pn̄), which is worse than other methods
discussed. Therefore, we do not include this method in our experiments.

In contrast, SGD is one of the state-of-the-art methods for linear SVM(e.g.,
Shalev-Shwartz et al. (2007).) We have mentioned that the main reason is that
special methods to consider the structure of the loss term have not been available.

4 Experiments

In this section, we begin with describing details of a truncated Newton implemen-
tation of our approach. The first experiment is to evaluate methods discussed in
Section 2. In particular, the speed of different implementations of order-statistic
trees is examined. Next, we compare state of the art methods for linear rankSVM
with the proposed approach. Then an investigation of the performance difference
between linear rankSVM and pointwise methods is conducted. Finally, an exper-
iment on sparse data is shown. Programs used for experiments can be found at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

4.1 Implementation Using a Trust Region Newton Method

In our implementation of the proposed approach, we consider a trust region New-
ton method (TRON) that is a truncated Newton method discussed in Section 2.1.
For details of trust region methods, a comprehensive book is by Conn et al. (2000).
Here we mainly follow the setting in Lin and Moré (1999); Lin et al. (2008).

16

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

TRON adopts the trust region technique to obtain the truncated Newton step.
It finds the direction s by minimizing gt(s) in (7) over a region that we trust.

min
s

gt(s) subject to ‖s‖ ≤ ∆t, (35)

where ∆t is the size of the trust region. After solving (35), it decides whether to
apply the obtained direction st according to the approximate function reduction
gt(s) and the real function decrease. That is,

wt+1 →

{
wt, if ρk < η0,

wt + s if ρk ≥ η0,
(36)

where η0 ≥ 0 is a pre-specified parameter and

ρk ≡
f(wt + st)− f(wt)

gt(st)
.

TRON adjusts the trust region ∆t according to ρk. When it is too small, ∆t is
decreased. Otherwise, while ρk is large enough, TRON increases the value of ∆t.
More specifically, the following rule is considered.

∆t+1 ∈ [σ1 min(‖st‖,∆t), σ2∆t] if ρk ≤ η1,

∆t+1 ∈ [σ1∆t, σ3∆t] if ρk ∈ (η1, η2), (37)

∆t+1 ∈ [∆t, σ3∆t] if ρk ≥ η2,

where

η0 = 10−4, η1 = 0.25, η2 = 0.75,

σ1 = 0.25, σ2 = 0.5, σ3 = 4.0.

For linear classification, Lin et al. (2008) apply the approach of Steihaug (1983)
to run CG iterations until either a minimum of gt(s) is found or s touches the
boundary of the trust region. We consider the same setting in our implementation.

Regarding the stopping condition, we follow that of TRON in the package
LIBLINEAR (Fan et al., 2008) to check if the gradient is relatively smaller than the
initial gradient.

‖∇f(wk)‖2 ≤ εs‖∇f(w0)‖2, (38)

where w0 is the initial iterate and εs is the stopping tolerance given by users. By
default, we set εs = 10−3 and let w0 be the zero vector.

4.2 Experiment Setting

We consider three sources of web-search engine ranking: LETOR 4.0 (Qin et al.,
2010), MSLR3 and YAHOO LTRC (Chapelle and Chang, 2011). Both LETOR
4.0 and MSLR are from Microsoft Research, while YAHOO LTRC is from Yahoo
learning to rank challenge. From LETOR 4.0, we take four sets MQ2007, MQ2008,
MQ2007-list and MQ2008-list. For MSLR, we take the set with name 30k, which
indicates the number of queries within it.4 Each set from LETOR 4.0 or MSLR

3http://research.microsoft.com/en-us/projects/mslr/
4The number of queries shown in Table 2 is less because we only report the

training set statistics.

17

http://research.microsoft.com/en-us/projects/mslr/

average kq/lq
Data set l n k |Q| p over queries
MQ2007 fold 1 42, 158 46 3 1, 017 246, 015 0.0546
MQ2008 fold 1 9, 630 46 3 471 52, 325 0.1697
MSLR 30k fold 1 2, 270, 296 136 5 18, 919 101, 312, 036 0.0492
YAHOO LTRC set 1 473, 134 519 5 19, 944 5, 178, 545 0.2228
YAHOO LTRC set 2 34, 815 596 5 1, 266 292, 951 0.1560
MQ2007-list fold 1 743, 790 46 1, 268 1, 017 285, 943, 893 1
MQ2008-list fold 1 540, 679 46 1, 831 471 323, 151, 792 1

Table 2: Statistics of training data sets. Note that all data sets are dense (i.e.,
n̄ = n). In the last column, lq and kq are the number of instances and the number
of relevance levels in query q, respectively. See Table 1 for the meaning of other
columns.

consists of five segmentations, and we take the first fold. YAHOO LTRC contains
two sets and both are considered. The details of these data sets are listed in Table
2. Each set comes with training, validation and testing sets; we use the validation
set only for selecting the parameters of each model. For pre-processing, we linearly
scale each feature of YAHOO LTRC and MSLR data sets to the range [0, 1], while
the features of LETOR 4.0 data sets are already in this range.

All the experiments are conducted on a 64-bit machine with Intel Xeon 2.5GHz
CPU (E5504), 12MB cache, and 16GB memory.

4.3 A Comparison Between Methods in Section 2: a Di-
rect Counting Method and Different Order-statistic
Trees

We solve (3) using TRON and compare the following methods for calculating
l+i (w), l−i (w), γ+i (w,v) and γ−i (w,v).
• direct-count: the direct counting method mentioned in the end of Section 2.2;

see details in the supplementary material.
• y-rbtree: the red-black tree using yi as the key of nodes. See Section 2.3.
• wTx-rbtree: the red-black tree using wTxi as the key of nodes. See Section 2.3.
• selectiontree: the selection tree that stores keys in leaf nodes. See Section 2.4.
• y-avltree: the same as y-rbtree, except the order-statistic tree used is AVL tree.

See Section 2.5.
• y-aatree: the same as y-rbtree, except the order-statistic tree used is AA tree.

See Section 2.5.
The trust region Newton method, written in C/C++, is extended from the

implementation in LIBLINEAR. To compare the convergence speed, we investigate
the relative difference to the optimal function value.∣∣∣f(w)− f(w∗)

f(w∗)

∣∣∣,
18

(a) MSLR 30k (b) YAHOO LTRC set 1

(c) MQ2007-list (d) MQ2008-list

Figure 4: Comparison between different order-statistic tree implementations and
the direct counting method. We present training time and relative difference
to the optimal function value. C = 1 is set for all the four data sets. The
dotted horizontal line indicates the function value of TRON using default stopping
tolerance εs = 0.001 in (38).

where w∗ is the optimum of (3). We run the optimization algorithm long enough
to obtain an approximation of f(w∗).

We take four data sets and set C = 1. The results of training time versus
function values are shown in Figure 4. We also draw a horizontal line in the
figure to indicate that the default stopping condition in TRON of using εs = 10−3

in (38) has been satisfied. Experiments in Section 4.4 will show that solutions
obtained below this line have similar ranking performance to the optimum. From
the figures, the method of direct counting is slow when k (number of relevance
levels) is large. This result is expected following the complexity analysis in (20). In
addition, although implementations of order-statistic trees have slightly different
running time in the end, they are very similar otherwise. Therefore, we choose
selection trees in subsequent experiments because of the simplicity.

4.4 A Comparison Between Different Methods for Linear
RankSVM

We compare the following methods for linear rankSVM.
• Tree-TRON: our approach of using TRON with selection trees.
• PRSVM+ (Chapelle and Keerthi, 2010): this method was discussed in Section

3.1. The authors did not release their code, so we make an implementation using

19

the same framework of Tree-TRON. Therefore, we apply trust region rather than
line search in their truncated Newton procedure.
• TreeRankSVM (Airola et al., 2011): this method was discussed in Section 3.2.

We download version 0.1 from http://staff.cs.utu.fi/~aatapa/software/

RankSVM/. Although this package is mainly implemented in Python, compu-
tationally intensive procedures such as red-black trees and the minimization of
(33) are written in C/C++ or Fortran.

Note that TreeRankSVM solves L1-loss rankSVM, but the other two consider L2
loss. Therefore, they have different optimal function values. We separately ob-
tain their own optima and compute the corresponding relative difference to the
optimal function value. For prediction performance, we first check normalized dis-
counted cumulative gain (NDCG), which is widely used for comparing ranked lists
of information retrieval tasks (Järvelin and Kekäläinen, 2002). Several definitions
of NDCG are available, so we follow the recommendation of each data source.
Assume m is a pre-specified positive integer, π is an ideal ordering with

yπ(1) ≥ yπ(2) ≥ · · · ≥ yπ(lq), ∀q ∈ Q,

and π′ is the ordering being evaluated, where lq is the number of instances in query
q. Then,

NDCG@m ≡ (Nm)−1
m∑
i=1

(2yπ′(i) − 1)d(i), (39)

where

Nm =
m∑
i=1

(2yπ(i)−1)d(i) and d(i) =

{
1

log2(max(2,i))
for MSLR and LETOR 4.0,

1
log2(i+1)

for YAHOO LTRC.

Nm is the score of an ideal ordering, where top ranked instances are considered
more important because of larger (2yπ(i) − 1)d(i). From (39), NDCG computes
the relative score of the evaluated ordering to the ideal ordering. Regarding m,
YAHOO LTRC considers

m = min(10, lq).

For MSLR and LETOR 4.0, we follow their recommendation to use mean NDCG.

Mean NDCG ≡
∑lq

i=1 NDCG@i

lq
.

We then report the average over all queries.
We further consider pairwise accuracy as a measurement because it is directly

related to the loss term of rankSVM. Pairwise accuracy is widely adopted in areas
such as statistics and medical data analysis, but with the name concordance index
or Kendall’s τ (Kendall, 1938).

Pairwise accuracy ≡ |{(i, j) | (i, j) ∈ P, w
Txi > w

Txj}|
p

.

20

http://staff.cs.utu.fi/~aatapa/software/RankSVM/
http://staff.cs.utu.fi/~aatapa/software/RankSVM/

We adopt the algorithm of Christensen (2005) that uses an AVL tree to compute
pairwise accuracy in O(l log l) time,5 but our implementation uses a selection tree.

For each evaluation criterion, we find the best regularization parameter by
checking the validation set result of C ∈ {2−15, 2−14, . . . , 210}.6 The selected regu-
larization parameter C for each data set and each measurement is listed in Table
3. The results of comparing different approaches can be found in Figures 5 and 6.
We present the relative difference to the optimal function value,7 pairwise accu-
racy, and (mean) NDCG. We also draw the horizontal lines of the default stopping
condition of Tree-TRON in the figures.

One could observe from the figures that the convergence speed of TreeRankSVM
is slower than PRSVM+ and Tree-TRON. To rule out the implementation dif-
ferences between Tree-TRON/PRSVM+ and TreeRankSVM, in the supplementary
materials we check iterations versus relative function value and test performance.8

Results still show that TreeRankSVM is slower, so for linear rankSVM, methods
using second-order information seem to be superior. Regarding Tree-TRON and
PRSVM+, Figures 5 shows that they are similar when the average kq/lq is small.
However, from Figure 6, PRSVM+ is much slower if the number of preference levels
is large (i.e., large kq/lq). This result is expected following the complexity anal-
ysis in (29) and (32). Another observation is that the performances of PRSVM+
and Tree-TRON are stable after the default stopping condition is satisfied. Thus,
tuning εs in (38) is generally not necessary.

This experiment also serves as a comparison between L1- and L2-loss linear
rankSVM. Results show that their performances (NDCG and pairwise accuracy)
are similar.

Instead of using the best C after parameter selection, we investigate the train-
ing time under a fixed C for all methods. We check the situations that C is large,
medium and small by using C = 100, C = 1 and C = 10−4, respectively. The
results are shown in Figure 7. We can observe that Tree-TRON is always one of
the fastest methods.

4.5 A Comparison Between Linear RankSVM, Linear Sup-
port Vector Regression, GBDT, and Random Forests

We compare rankSVM using Tree-TRON with the following pointwise methods:
• Linear support vector regression (SVR) by Vapnik (1995): we check both L1-

loss and L2-loss linear SVR provided in the package LIBLINEAR (version 1.92).
Their implementation details can be found in Ho and Lin (2012). For L2-loss

5Here l represents the number of testing data.
6In the implementation of TreeRankSVM, the formulation is scaled so the regu-

larization parameter is λ = 1/(Cp).
7Parameters selected using (validation) pairwise accuracy are considered, but

results of using NDCG are similar.
8For Tree-TRON/PRSVM+, we use CG iterations rather than outer Newton

iterations because each CG has a similar complexity to that of a cutting plane
iteration.

21

Relative function value Pairwise accuracy NDCG

(a) MQ2007

(b) MQ2008

(c) MSLR 30k (No result of TreeRankSVM because the parameter selection time is too long)

(d) YAHOO LTRC set 1 (No result of TreeRankSVM because the parameter selection time is too long)

(e) YAHOO LTRC set 2
Figure 5: A comparison between different linear rankSVM methods on function
values, pairwise accuracy and NDCG. x-axis is in log scale.

22

Problem (2) using L1 loss Problem (3) using L2 loss
Data sets Pairwise accuracy NDCG Pairwise accuracy NDCG
MQ2007 2−1 28 2−5 2−15

MQ2008 28 2−6 27 27

MSLR 30k NA NA 23 23

YAHOO LTRC set 1 NA NA 2−14 21

YAHOO LTRC set 2 2−7 2−4 2−10 2−10

MQ2007-list 25 NA 2−12 NA
MQ2008-list 2−14 NA 2−14 NA

Table 3: Best regularization parameter for each data set and each measurement.
When problem (2) with L1 loss is used, TreeRankSVM failed to finish the parameter
selection procedure on MSLR 30k and YAHOO LTRC set 1 after long running time.
NDCG cannot be used for MQ2007-list and MQ2008-list because the large k leads
to the overflow of 2yπ′(i) in (39).

linear SVR, two implementations are available in LIBLINEAR by solving primal
and dual problems, respectively. We use the one that solves the primal problem
by TRON.
• GBDT (Friedman, 2001): this is a nonlinear pointwise model that is known to

be powerful for web-search ranking problems. We use version 0.9 of the pack-
age pGBRT (Tyree et al., 2011) downloaded from http://machinelearning.

wustl.edu/pmwiki.php/Main/Pgbrt.
• Random forests (Breiman, 2001): this is another nonlinear pointwise model that

performs well on web-search data. We use version 1.0 of Rt-Rank downloaded
from https://sites.google.com/site/rtranking.
For linear SVR, we set the ε-insensitive parameter ε = 0 because Ho and Lin

(2012) showed that this setting often works well. We then conduct the same
parameter selection procedure as in Section 4.4 to find the best regularization
parameters C and list them in Table 4. The training time, test NDCG and test
pairwise accuracy are shown in Table 5. We first observe that the performance of
L1-loss SVR is worse than L2-loss SVR. The reason might be that L1 loss imposes
a smaller training loss when the prediction error is larger than 1. Regarding L2-
loss SVR and L2-loss rankSVM, their NDCG results are close, but rankSVM gives
better pairwise accuracy. This result seems to be reasonable because rankSVM
considers pairwise training losses. For training time, although the selected regu-
larization parameters are different and hence results are not fully comparable, in
general L2-loss SVR is faster. In summary, L2-loss SVR is competitive in terms
of NDCG and training time, but rankSVM may still be useful if pairwise accuracy
is what we concern about.

Next, we check GBDT and random forests. Their training time is long, so
we do not conduct parameter selection. We consider a small number of trees and
fix the parameters as follows. For GBDT, we use learning rate = 0.1, tree depth
= 4 and number of trees = 100. For random forests, we use number of sampled
features for splitting in each node = b

√
nc and number of trees = 40. We further

23

http://machinelearning.wustl.edu/pmwiki.php/Main/Pgbrt
http://machinelearning.wustl.edu/pmwiki.php/Main/Pgbrt
https://sites.google.com/site/rtranking

Relative function value Pairwise accuracy

(a) MQ2007-list

(b) MQ2008-list

Figure 6: A comparison between different linear rankSVM methods on function
values and pairwise accuracy. The two sets MQ2007-listMQ2008-list have large k
(number of relevance levels). NDCG cannot be used because of the overflow of
2yπ′(i) in (39). x-axis is in log scale.

use eight cores to reduce the training time. The results are shown in Table 6. For
the smaller data sets MQ2007, MQ2008 and YAHOO LTRC set 2, we are able to
train more trees in a reasonable time, so we present in Table 7 the result of using
1, 000 trees.

From Tables 6-7, GBDT and random forests generally perform well, though
they are not always better than linear rankSVM. For YAHOO LTRC set 2, random
forests achieves 0.78 NDCG using 1, 000 trees, which is much better than 0.75 of
linear rankSVM. This result is consistent with the fact that in Yahoo Learning
to Rank Challenge, top performers all use decision tree based methods. However,
the training cost of GBDT and random forests is in general higher than linear
rankSVM. Therefore, linear rankSVM is useful to quickly provide a baseline result.
We also note that the performance of GBDT with more trees are not always better
than with few trees. This result seems to indicate that overfitting occurs and
parameter selection is important. In contrast, random forests is more robust. The
training time of GBDT is faster than random forests because in random forests,
the tree depth is unlimited while we restrict the depth of trees in GBDT to be
four.

Although pointwise methods perform well in this experiment, a potential prob-
lem is that they do not consider different queries. It is unclear if this situation
may cause any problems.

24

L1-loss linear SVR L2-loss linear SVR
Data set Pairwise accuracy NDCG Pairwise accuracy NDCG
MQ2007 28 28 2−7 2−11

MQ2008 28 28 2−1 2−4

MSLR 30k 2−1 22 2−2 2−2

YAHOO LTRC set 1 2−10 2−5 2−5 2−2

YAHOO LTRC set 2 2−3 21 2−5 24

MQ2007-list 2−9 NA 2−15 NA
MQ2008-list 24 NA 2−7 NA

Table 4: Best regularization parameter for each data set and each measurement
of SVR

4.6 A Comparison Between Linear and Nonlinear Models
on Sparse Data

Recent research works have shown that linear SVM is competitive with nonlinear
SVM on classifying large and sparse data (Yuan et al., 2012). We conduct an
experiment to check if this property also holds for learning to rank. We consider
rankSVM as the linear model for comparison, but for the nonlinear model we use
random forests rather than kernel rankSVM. One reason is that random forests is
very robust in the previous experiment. We consider the following two CTR (click
through rate) estimation problems, which can be either treated as regression or
ranking problems.
• CTR: This is a data set used in Ho and Lin (2012).
• KDD2012b: This is the processed data generated by the winning team (Wu

et al., 2012) of KDD Cup 2012 track 2 (Niu et al., 2012). It contains about one-
third of the original data. The task of this competition is online advertisement
ranking evaluated by AUC, while the labels are number of clicks and number
of views. Note that pairwise accuracy is reduced to AUC when k = 2. We
transform the labels into CTR (i.e., number of clicks over number of views).

The two data sets both contain a single query and each comes with training/testing
sets. To reduce the training time and the memory cost of random forests, we
subsample from the two data sets and condense the features. The details are
listed in Table 8. We use the same parameters of random forests as in Section
4.5. For a fair comparison, we fix C = 1 for rankSVM because the parameters
of random forests are not well tuned. The results are shown in Table 9. We first
notice the training time of random forests is several thousand times more than
linear rankSVM on sparse data. The difference is larger than the case of dense data
because the training cost of random forests is linear to the number of features, but
that of rankSVM is linear to the average number of non-zero features. Regarding
the performance, the difference is small for the two data sets, so linear rankSVM
is very useful to quickly get competitive results. However, more experiments are
needed to confirm these preliminary observations; we hope more public sparse
ranking data will be available in the near future.

25

L2-loss RankSVM L1-loss SVR L2-loss SVR
Training

NDCG
Training

NDCG
Training

NDCG
Data set time (s) time (s) time (s)
MQ2007 0.5 0.5211 23.9∗ 0.4756∗ 0.5 0.5157
MQ2008 0.5 0.4571 3.4∗ 0.4153∗ 0.2 0.4450
MSLR 30k 1, 601.6 0.4945 461.6 0.4742 202.4 0.4946
YAHOO LTRC set 1 334.8 0.7616 10.8 0.7579 172.7 0.7642
YAHOO LTRC set 2 11.2 0.7519 47.6 0.7470 20.8 0.7578
*: Reached maximum iteration of LIBLINEAR.

L2-loss RankSVM L1-loss SVR L2-loss SVR
Training Pairwise Training Pairwise Training Pairwise

Data set time (s) accuracy time (s) accuracy time (s) accuracy
MQ2007 1.3 70.36% 23.9∗ 64.06%∗ 0.7 68.56%
MQ2008 0.5 82.70% 3.4∗ 77.72%∗ 0.3 82.17%
MSLR 30k 1, 601.6 61.52% 65.4 60.11% 202.4 60.49%
YAHOO LTRC set 1 117.1 68.45% 2.4 67.82% 149.5 67.83%
YAHOO LTRC set 2 11.2 69.74% 3.3 68.37% 14.5 69.39%
MQ2007-list 38.7 80.71% 1.0 79.82% 5.0 79.70%
MQ2008-list 16.6 82.11% 1.1 81.65% 6.7 81.85%
*: Reached maximum iteration of LIBLINEAR.

Table 5: Comparison between rankSVM and SVR

5 Using Partial Pairs to Train Models

To avoid considering the O(l2) pairs, a common practice in ranking is to use only
a subset of pairs. An example is Lin (2010) that uses pairs with close relevance
levels (i.e., yi close to yj). The concept is similar to Equation (5): if pairs with
close relevance levels are ranked with the right order, then those pairs with larger
distances should also be ranked correctly. When k = O(l), this approach can
reduce the number of pairs from O(l2) to be as small as O(k) = O(l). However, if
k is small, each pair is already formed by instances in two close relevance levels,
so we cannot significantly reduce the number of pairs.

We take MQ2007-list and MQ2008-list to conduct experiments because these
two data sets possess the property kq = lq, ∀q ∈ Q. Because in each q, the values
of yi are 1, . . . , lq, we use the pairs (i, j) ∈ P with yi = yj + 1. This setting
of using two adjacent relevance levels leads to O(l) pairs. Then we can directly
consider (2) and (3) as classification problems with instances xi − xj. If Newton
methods are considered for solving (3), by the approach in Equation (12), each
Hessian-vector product costs only O(ln̄ + l + n). Therefore, we directly use the
TRON implementation to solve L2-loss SVM in LIBLINEAR without applying any
special method in Section 2. After selecting the parameter C, we present pairwise
accuracy in Table 10. It is observed that the selected C of using partial pairs
is larger than that of using all pairs. This situation occurs because the sum of

26

Random forests GBDT
Training Pairwise

NDCG
Training Pairwise

NDCG
Data set time (s) accuracy time (s) accuracy
MQ2007 14.8 66.16% 0.4959 1.4 69.78% 0.5182
MQ2008 2.3 80.36% 0.4541 0.4 82.83% 0.4706
MSLR 30k 5, 102.1 63.76% 0.5598 1, 339.3 62.77% 0.5375
YAHOO LTRC set 1 1, 672.2 70.69% 0.7797 557.7 69.22% 0.7707
YAHOO LTRC set 2 58.7 68.76% 0.7629 11.3 71.21% 0.7711
MQ2007-list 606.0 78.78% NA 106.8 79.85% NA
MQ2008-list 423.3 82.04% NA 59.3 82.43% NA

Table 6: Performance of GBDT and random forests with a small number of trees
(40 for random forests and 100 for GBDT).

Random forests GBDT
Training Pairwise

NDCG
Training Pairwise

NDCG
Data set time (s) accuracy time (s) accuracy
MQ2007 345.3 69.07% 0.5221 13.7 67.58% 0.4892
MQ2008 52.0 82.60% 0.4675 3.6 79.78% 0.4491
YAHOO LTRC set 2 1, 406.9 71.91% 0.7801 108.7 71.70% 0.7720

Table 7: Performance of GBDT and random forests with 1, 000 trees.

Data set l n n̄ k p
CTR 11, 382, 195 22, 510, 600 22.6 93, 899 46, 191, 724, 381, 879
KDD2012b 68, 019, 906 79, 901, 700 35.3 6, 896 198, 474, 800, 029, 148
CTR (0.1%) 11, 382 73, 581 22.6 1, 087 46, 020, 848
KDD2012b (0.025%) 17, 005 74, 026 35.3 26 12, 704, 393

Table 8: Statistics of sparse training data sets. To reduce the training time, only
a small subset of each problem is used.

training losses in (3) on a smaller number of pairs must be penalized by a larger
C. For training time and pairwise accuracy, it is as expected that the approach
of using partial pairs slightly sacrifice the performance for faster training speed.

Because of the only slightly lower pairwise accuracy, we may say that this
approach together with past works are already enough to train large-scale linear
rankSVM:
• If k is small, we can apply the direct method mentioned in Section 2.2 that has

an O(lk) term for calculating l+i (w), l−i (w), γ+i (w,v) and γ−i (w,v).
• If k is large, we can use only O(l) pairs. Then any efficient methods to train

linear SVM can be applied.
However, a caveat is that two different implementations must be used. In contrast,
methods of using order-statistic trees can simultaneously handle situations of small
and large k.

27

Linear rankSVM Random forests
Training Pairwise Mean Training Pairwise Mean

Data set time (s) accuracy NDCG time (s) accuracy NDCG
CTR (0.1%) 4.3 60.83% 0.4822 6, 343.3 60.45% 0.4732
KDD2012b (0.025%) 2.7 68.16% 0.5851 5, 223.1 69.72% 0.5982

Table 9: Performance of linear rankSVM and random forests on sparse data.
Random forests uses 40 trees.

MQ2007-list MQ2008-list
Training Pairwise Training Pairwise

C time (s) accuracy C time (s) accuracy
Partial pairs 2−9 19.9 79.10% 2−10 10.5 81.81%
All pairs 2−12 38.7 80.71% 2−14 16.6 82.11%

Table 10: A comparison between using partial pairs and all pairs to train a model.
LIBLINEAR using TRON for L2-loss SVM is used for the partial-pair setting, while
Tree-TRON is used for all pairs.

6 Conclusions

In this paper, we systematically reviewed recent approaches for linear rankSVM.
We show that, regardless of optimization methods used, the computational bottle-
neck is on calculating some values over all preference pairs. Following Airola et al.
(2011), we comprehensively investigate tree-based techniques for the calculation.
Experiments show that our method is faster than existing implementations for
linear rankSVM.

Based on this study, we release an extension of the popular linear classifica-
tion/regression package LIBLINEAR for ranking. It is available at http://www.

csie.ntu.edu.tw/~cjlin/libsvmtools/.

Acknowledgment

This work was supported in part by the National Science Council of Taiwan via the
grant 101-2221-E-002-199-MY3. The authors thank Chia-Hua Ho for discussion
and inspiration of the selection tree data structure. We also thank Husan-Tien
Lin, Yuh-Jye Lee and the anonymous reviewers for valuable comments.

References

Georgy Maximovich Adelson-Velsky and Evgenii Mikhailovich Landis. An algo-
rithm for the organization of information. Proceedings of the USSR Academy of
Sciences, 146:263–266, 1962.

28

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

Antti Airola, Tapio Pahikkala, and Tapio Salakoski. Training linear ranking SVMs
in linearithmic time using red–black trees. Pattern Recognition Letters, 32(9):
1328–1336, 2011.

Arne Andersson. Balanced search trees made simple. In Proceedings of the Third
Workshop on Algorithms and Data Structures, pages 60–71, 1993.

Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algo-
rithms. Acta Informatica, 1:290–306, 1972.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 144–152. ACM Press, 1992.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Christopher J. C. Burges. From RankNet to LambdaRank to LambdaMART: An
overview. Technical Report MSR-TR-2010-82, Microsoft Research, 2010.

Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In
JMLR Workshop and Conference Proceedings: Workshop on Yahoo! Learning
to Rank Challenge, volume 14, pages 1–24, 2011.

Olivier Chapelle and S. Sathiya Keerthi. Efficient algorithms for ranking with
SVMs. Information Retrieval, 13(3):201–215, 2010.

David Christensen. Fast algorithms for the calculation of Kendall’s τ . Computa-
tional Statistics, 20:51–62, 2005.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-region
Methods. Society for Industrial and Applied Mathematics, Philadelphia, 2000.

Corina Cortes and Vladimir Vapnik. Support-vector network. Machine Learning,
20:273–297, 1995.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, 2008. URL http://www.csie.ntu.edu.tw/

~cjlin/papers/liblinear.pdf.

Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics, 29(5):1189–1232, 2001.

Dominique A. Heger. A disquisition on the performance behavior of binary search
tree data structures. European Journal for the Informatics Professional, 5(5):
67–75, 2004.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank bound-
aries for ordinal regression. In Peter J. Bartlett, Bernhard Schölkopf, Dale Schu-
urmans, and Alexander J. Smola, editors, Advances in Large Margin Classifiers,
pages 115–132. MIT Press, 2000.

29

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

Chia-Hua Ho and Chih-Jen Lin. Large-scale linear support vector regression.
Journal of Machine Learning Research, 13:3323–3348, 2012. URL http://www.

csie.ntu.edu.tw/~cjlin/papers/linear-svr.pdf.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

Thorsten Joachims. A support vector method for multivariate performance mea-
sures. In Proceedings of the Twenty Second International Conference on Machine
Learning (ICML), 2005.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2006.

S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast
solution of large scale linear SVMs. Journal of Machine Learning Research, 6:
341–361, 2005.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):
81–93, 1938.

Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,
Reading, MA, 1973.

Chih-Jen Lin and Jorge J. Moré. Newton’s method for large-scale bound con-
strained problems. SIAM Journal on Optimization, 9:1100–1127, 1999.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton
method for large-scale logistic regression. Journal of Machine Learning Re-
search, 9:627–650, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/

logistic.pdf.

Ken-Yi Lin. Data selection techniques for large-scale rankSVM. Master’s the-
sis, Department of Computer Science and Information Engineering, National
Taiwan University, 2010.

Olvi L. Mangasarian. A finite Newton method for classification. Optimization
Methods and Software, 17(5):913–929, 2002.

Ananth Mohan, Zheng Chen, and Kilian Weinberger. Web-search ranking with
initialized gradient boosted regression trees. In JMLR Workshop and Conference
Proceedings: Workshop on Yahoo! Learning to Rank Challenge, volume 14,
pages 77–89, 2011.

Yanzhi Niu, Yi Wang, Gordon Sun, Aden Yue, Brian Dalessandro, Claudia Perlich,
and Ben Hamner. The Tencent dataset and KDD-Cup12. In ACM SIGKDD
KDD-Cup WorkShop, 2012.

30

http://www.csie.ntu.edu.tw/~cjlin/papers/linear-svr.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/linear-svr.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. LETOR: A benchmark collection for
research on learning to rank for information retrieval. Information Retrieval, 13
(4):346–374, 2010.

D. Sculley. Large scale learning to rank. In NIPS 2009 Workshop on Advances in
Ranking. 2009.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: primal es-
timated sub-gradient solver for SVM. In Proceedings of the Twenty Fourth
International Conference on Machine Learning (ICML), 2007.

Trond Steihaug. The conjugate gradient method and trust regions in large scale
optimization. SIAM Journal on Numerical Analysis, 20:626–637, 1983.

Choon Hui Teo, S.V.N. Vishwanathan, Alex Smola, and Quoc V. Le. Bundle meth-
ods for regularized risk minimization. Journal of Machine Learning Research,
11:311–365, 2010.

Stephen Tyree, Kilian Q Weinberger, Kunal Agrawal, and Jennifer Paykin. Par-
allel boosted regression trees for web search ranking. In Proceedings of the 20th
International Conference on World Wide Web, pages 387–396, 2011.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, NY, 1995.

Kuan-Wei Wu, Chun-Sung Ferng, Chia-Hua Ho, An-Chun Liang, Chun-Heng
Huang, Wei-Yuan Shen, Jyun-Yu Jiang, Ming-Hao Yang, Ting-Wei Lin, Ching-
Pei Lee, Perng-Hwa Kung, Chin-En Wang, Ting-Wei Ku, Chun-Yen Ho, Yi-Shu
Tai, I-Kuei Chen, Wei-Lun Huang, Che-Ping Chou, Tse-Ju Lin, Han-Jay Yang,
Yen-Kai Wang, Cheng-Te Li, Shou-De Lin, and Hsuan-Tien Lin. A two-stage
ensemble of diverse models for advertisement ranking in KDD Cup 2012. In
ACM SIGKDD KDD-Cup WorkShop, 2012.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. Recent advances of large-scale
linear classification. Proceedings of the IEEE, 100(9):2584–2603, 2012. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/survey-linear.pdf.

Zhaohui Zheng, Keke Chen, Gordon Sun, and Hongyuan Zha. A regression frame-
work for learning ranking functions using relative relevance judgments. In Pro-
ceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 287–294. ACM, 2007.

A The Dual Problem of (2) and (3)

Based on the original training data, we can construct a new set {yi,j,xi,j} ∀(i, j) ∈
P with

xi,j = xi − xj, and yi,j = 1, ∀(i, j) ∈ P.

31

http://www.csie.ntu.edu.tw/~cjlin/papers/survey-linear.pdf

Using this training data set, (2) and (3) can be viewed as L1-loss and L2-loss SVM
problems with only one class of data, respectively. Then the dual problems of (2)
and (3) are both in the following form.

min
α

1

2
αT Q̄α− eTα

subject to 0 ≤ αi,j ≤ U,∀(i, j) ∈ P,

where Q̄ = Q + D, D is a diagonal matrix and Q = AX(AX)T . For L1 loss,
U = C and D is the zero matrix. For L2 loss, U = ∞ and D = I/(2C), where I
is the p by p identity matrix.

Notice that the KKT condition for L2-loss SVM gives

max(0, 1−wTxi,j) =
αi,j
2C

,∀(i, j) ∈ P,

which implies
1−wT (xi − xj) > 0 ⇔ αi,j > 0.

Thus the set SV(w) defined in (14) corresponds to the set of support vectors.

32

C = 100 C = 1 C = 10−4

(a) MQ2007

(b) MQ2008

(c) YAHOO LTRC set 2

(d) MQ2007-list

(e) MQ2008-list
Figure 7: A comparison between different linear rankSVM methods on relative
function value with the same C. We set C to be 100, 1 and 10−4.

33

	Introduction
	Efficient Calculation Over Relevance Pairs
	Information Needed in Optimization Procedures and An Example Using Truncated Newton Methods
	Efficient Function/Gradient Evaluation and Matrix-vector Products
	Efficient Calculation by Storing Values in an Order-statistic Tree
	A Different Implementation by Storing Keys in Leaves of a Tree
	A Discussion on Tree Implementations

	Comparison with Existing Methods
	PRSVM and PRSVM+
	TreeRankSVM
	sofia-ml

	Experiments
	Implementation Using a Trust Region Newton Method
	Experiment Setting
	A Comparison Between Methods in Section 2: a Direct Counting Method and Different Order-statistic Trees
	A Comparison Between Different Methods for Linear RankSVM
	A Comparison Between Linear RankSVM, Linear Support Vector Regression, GBDT, and Random Forests
	A Comparison Between Linear and Nonlinear Models on Sparse Data

	Using Partial Pairs to Train Models
	Conclusions
	The Dual Problem of (2) and (3)

